CSC 257/CSC 457: Computer Networks — Fall 2001

Project One: The ACME HTTP Proxy Server!

Assigned: Thursday, September 20th, 2001
Due: Friday, October 5th, 2001, 5 p.m.

When the CIO convinced ACME Fudge & Bolt Co.’s CEO of the importance of joining the
Internet revolution, he thought he was doing the company a huge favor and a big bonus would be
his for the taking. Unfortunately, his predictions that ACME’s profits would climb through the
roof, employee productivity would soar, and the company’s image would shine like never before have
proven to be, how shall we put this mildly... disastrously inaccurate. A series of major problems
have arisen:

e the Internet load quickly overwhelmed the initial ISDN link, so ACME had to change to a
new and more expensive internet service provider and install an expensive T3 link;

e employee productivity has been steadily declining - on several occasions, ACME’s CEO caught
marketing twerps playing Doom, wasting time surfing the net, and tying up the internet
link for long periods of time downloading material from www.playboy.com. People in other
departments have seen even worse.

e company profits are down, and the new web server has proven to be more of a marketing
embarrassment than a marketing bonanza. The final coup came in July, when a prankster
hacked their way into ACME’s network and caused computers to display nothing but pictures
of snow-covered mountains, Santa Claus, and reindeer for an entire week.

After the “Christmas server” incident, ACME’s CEO went ballistic. She told the CIO that he had
until the end of September to solve the problems or find a replacement. A firewall was installed
immediately, which helped prevent outside hackers from breaking in. The next step involves con-
trolling ACME’s Internet link to restrict its abuse by ACME employees. You have been hired as
a contractor to write a configurable HTTP proxy server that would allow ACME employees access
to the Web on a need-to-browse basis.

1 Overview

HTTP requests consist of roughly three steps: (i) the client application parses the desired URL to
determine the machine name and TCP port number of the desired web page, and makes a TCP
‘socket’ connection to that machine and port; (ii) the client application sends a request message to
the server on the new socket connection, specifying what operation it wants performed (most often,
a GET operation to get the contents of a web page), and; (iii) the server application performs the
desired operation and returns the resulting data (most often a web page in html format) to the
client on the established TCP connection.

When a client application is configured to connect via a proxy server, the client establishes
its connection to the proxy server’s machine and TCP port and forwards its complete request to
the proxy server rather than the “real” web server. The HIT'TP proxy server accepts local HTTP
connections and forwards them to their final destination — essentially it introduces an extra “hop”
between the client browser and the web server. There are several reasons why you would use a
proxy server instead of connecting to the web site via the Internet directly: you might be behind
a firewall where direct connections are not allowed; a proxy can be used to locally cache data in

!This project was developed at the University of Utah and is being used with their permission.

CSC 257/CSC 457: Computer Networks — Fall 2001

order to reduce the amount of global traffic; or—in our case—the proxy is used to control access
to the Web on a per host/per location basis.

The objectives of this assignment are to help you learn how to write networking code using
the Berkeley sockets API, to familiarize you with one of the most widely used Internet application
protocols (http), and to give you experience in building client/server applications. An interesting
thing about proxy servers is that they behave like a server when they accept requests from local
clients, but they act like a client when they forward their local client requests along to the real
web server. Thus, by implementing a proxy server, you will get a feel for how both sides of a
client /server application are implemented.

The following sections detail the set of operations that your proxy server must perform to solve
ACME’s internet problem. In addition to this document, we have provided a number of other
resources to help you implement the project, including:

e RFC 1945: Hypertext Transfer Protocol (HTTP 1.0). This document describes the format
of HTTP protocol requests and responses, which is what your server will be receiving and
generating.

e RFC 1738: Uniform Resource Locators (URL). This document describes the format of URLs,
which your server will need to parse. Most of the legal URLs specified in RFC 1738 are not
supported by the ACME proxy server, however, so consider this text supplemental.

e RFC 1808: Relative Uniform Resource Locators. This document builds on RFC 1738. Like
that document, RFC 1808 is supplemental.

e Berkeley sockets user guide and examples: This collection of documents and sample programs
should prove useful for getting started on programming your proxy server using Berkeley
sockets. It is accessible via the class web page.

e Unix man pages: in addition to the high level primer described above, you should be sure
to read the relevant Unix man pages on gethostbyname (), gethostbyaddr (), byteorder,
socket (), bind(), listen(), accept (), and select ().

e Unix Network Programming sampling: The book, “Unix Network Programming” by W.
Richard Stevens is considered the quintessential guide to programming network applications
(clients or servers) on Unix. It’s on reserve at the library. You might consider owning or
borrowing a copy of the complete text if you want more background material or examples.

2 Requirements

Your proxy must implement a subset of the HTTP/1.0 protocol. The protocol is described in
RFC 1945. In this section, we describe the steps that your server must perform whenever a client
request arrives.

Upon startup, your server should read a configuration file, open a TCP socket on a port indicated
in the configuration file and start accepting requests. Whenever a connect request arrives, you
should translate the client’s IP address to a host name and check whether the client is allowed to
access the Web. If the client is not authorized, your server must refuse the connection immediately
— those marketing dweebs have been cut off the net entirely until further notice!

2.1 Processing an Incoming Request

For authorized clients, you must accept the request and parse it. A request consists of a request line,
followed by request header fields. The request line has three fields: method, URL and protocol

CSC 257/CSC 457: Computer Networks — Fall 2001

version (which in your case will be the string HTTP/1.0). Your server must implement the GET
and POST methods. In addition to these basic http methods, we require that you implement one
non-standard method, QUIT, to help us grade your work. The purpose of this method should be
obvious: whenever you get a QUIT request, your server should exit immediately.

After determining the method, the next thing you need to do is parse the URL (uniform resource
locator). The URL notation is almost as complicated as the HTTP protocol itself. The complete
details on the formation of URLs are available in RFCs 1738 and 1808, both of which are available
in the class handouts directory and via the class web page, but as with the HTTP protocol, we
require you to support only a subset of the legal URLs. In particular, your server only needs to
understand the http: scheme; if the request contains any other scheme (e.g., file:, ftp:, or
gopher:), it should be rejected.

Part of the URL is the host name of the machine serving the requested web page (e.g., for the
URL http://www.cs.rochester.edu/courses, www.cs.rochester.edu represents the host name
of the machine exporting the web page). Your server must differentiate between Web locations;
some locations can be blocked entirely, while other locations might be redirected to alternate
servers. Before contacting the destination server, your proxy must consult the configuration file
to determine whether access to the requested location is blocked or redirected to an alternative
location. Requests to URLs that refer to blocked locations cause your server to return an error
code to the client.

If the request location is not blocked, your server should attempt to connect to the server
specified in the server URL, or the new server if a redirection was performed. The default port
for HTTP access is TCP port 80; note however that the http: scheme allows for alternate port
specification (as in http://www.foo.com:1223/mumbo.html — in this case the desired TCP port is
1223). You must honor alternate port requests. When the connection is established, your proxy
server should forward the original request to the destination server.

As already noted, an HTTP request consists of a request line, followed by header fields.

Header fields consist of a keyword followed by a colon and an arbitrary sequence of tokens (field
value) terminated by a CRLF sequence®. Your proxy can be instructed to change the contents of
header fields on the fly, as the request is forwarded. The strategy employed here is to choose the
appropriate transformation as a function of the header keyword and do the substitution of the field
value (see below).

2.2 Processing a Reply

The connection established with the remote server is used both to transfer the forwarded request
and receive a reply (i.e., your proxy does a write and a read on the same socket descriptor).
When the remote server responds to your request, you will receive a response message counsisting
of a status line, a sequence of response header fields and a response body.

The HTTP protocol specifies the data type it is sending in the response body. The approach
is similar to the MIME conventions: header field Content-Type describes the returned document
using the media type convention, defined in the MIME standard. An example of a media type is
text/html.

The final piece of functionality that your proxy must implement is media filtering: it must be
possible to apply external filters (Unix programs) to the reply body based on its media type. For
example, it must be possible to pass all text data through a four-letter-word-removal filter, or pass

2Yes, the HTTP protocol, like many other Internet application protocols uses the CRLF sequence to represent an
end of line. You should correctly implement this requirement, i.e., just a newline or a carriage return is not sufficient
to terminate a line.

CSC 257/CSC 457: Computer Networks — Fall 2001

all composite (multipart) messages through an image removal filter. Your proxy server will not
need to perform the actual filtering! We will provide a set of filters, or you are welcome to test with
some of your own. However, your proxy must examine the media type of returned documents to
determine if the message body should be handed to a filter that has been registered for that type
of data, and if so, replace the returned message body with the output of the specified filter. The
interface for connecting to filter programs is described below.

2.3 Other Requirements

Your server should be capable of handling multiple connections concurrently. This means that you
must be very careful when using system calls that could block the server (i.e., reading or writing
from/to a socket). There are two common ways to handle multiple connections concurrently: (i)
forking off a child process for each connection and (ii) using the select(2) system call to perform
asynchronous operations. You may use whichever technique you prefer. Note that you are not
required to fork a process or use select during the resolution of host addresses using the DNS
interface. Although functions such as gethostbyname or gethostbyaddr block waiting for an
answer, you may block the server while performing these operations.

The HTTP protocol defines persistent connections that are used to send and receive more than
one request.

If you investigate HT'TP requests produced by various client browsers, and Netscape Navigator
in particular, you will see the header field Proxy-Connection: Keep-Alive. This indicates that
you should not close the connection when the last byte of the reply is sent. We do not require
that you implement persistent connections — you may close socket connections as soon as you finish
using them.

3 The Configuration File

The runtime behavior of the ACME HTTP proxy server is controlled by means of a configuration
file. Figure 1 illustrates a sample proxy configuration file.

A configuration file consists of a sequence of lines containing comments or commands. Com-
ments are initiated by a pound sign (#) and extend to the end of the line. Line continuation is
done by means of a backslash character (\) . Each non-empty line consists of a sequence of tokens
that make up a command (clause). If a token contains white space, it must be enclosed in double
quotes (“¢??). No special escape sequences are recognized in strings.

3.1 Configuration File Contents

There are six clauses that can appear in a configuration file:

port n If present, this clause specifies the TCP port number your server should listen on. If
omitted, the port number is indicated by the environment variable PROXY_PORT. If the clause
is not present and PROXY_PORT is undefined, the default http port (80) should be used.

refuse pattern This clause specifies hosts from whom connections should be refused. Argument
pattern is an extended reqular expression; for more information about regular expressions,
consult the regex(5) man page.

block pattern This clause specifies that all URLs matching pattern are blocked — an attempt to
access them should return an error message.

CSC 257/CSC 457: Computer Networks — Fall 2001

proxyrc -- sample HTTP proxy configuration file

#

This clause defines the port where proxy should listen on.

The value is accessible via the proxy_port() macro in *host* order.

port 5000

A list of refused clients and blocked/redirected URLs goes here.

The string that should be submitted to proxy_location() should

consist of the <host> part followed by ¢/’ and the <location> part.
Note that you should (a) extract port number (if any) and append

a trailing ‘/’ even if the <location> part of the URL is empty.

refuse marketing.acme.com # blocks complete ‘marketing’ group
block www.nytimes.com # news surfing is not allowed

redirect www.netscape.com/(.*) \
"www3.netscape.com/\1" # www3 server is preferrable to www.

This clause probably doesn’t have any real use, except if you try to
fool server or browser into believe something that isn’t there.

This clause, for example, rewrites ‘User-Agent’ header fields in

such a way that any substring ‘Netscape foo.bar ...’ is replaced

by ‘Mozilla foo.bar ...’ (Remember, it’s spelled M-o-z-i-1-1l-a :-)

rewrite User-Agent "Netscape (.*)" "Mozilla \1"

This is how you filter incoming data.

The HTTP protocol defines a bunch of content-types which have

exactly the same structure as used in MIME mail.

You have to parse the ‘Content-type’ header field, extract the media
and pass it to proxy_filter(). If a filter has been defined, you’ll
get as a return the string representing a shell command to be executed.

Sample entry here says that all text should be piped through an imaginary
scramble filter which groks text on stdin and dumps a swedish-chef
version of it on stdout. Note that the complete command line has

to be enclosed in double quotes if spaces are embedded.

H OH OH H OH H OH H H H H

filter text/(.*) "scramble -swedish -\1"

Figure 1 Sample proxy configuration file

CSC 257/CSC 457: Computer Networks — Fall 2001

Note that you must parse the original URL to extract the destination machine before attempt-
ing to match the request URL to pattern. In other words, you should strip off the scheme
prefix (http:), port specifier, and any other extraneous information from the requested URL
prior to performing the regular expression check. Note that a “/” marks the end of the host
part of the URL (possibly with a port extension), so stripping out the hostname should be
straightforward.

redirect pattern subst The redirect operation is similar to the block operation, except that in-
stead of returning an error message, you should redirect the request to a new location. This is
done by substituting the hostname and port number in the request URL with one specified in
the configuration file. The substitution string subst specifies the new location. It is possible
to include substrings of the original string in the replacement string. Substrings are delimited
in the pattern string by using parentheses; substrings of the original URL are available as
escape sequences \1, \2, ... Escape sequence \0 returns the original string.

rewrite hfield pattern subst This clause specifies that you should perform a substitution on the
request header field hfield by replacing the field value with the substitution string specified
in the configuration file.

filter media filter This clause specifies that for each media type matching media pattern, a filter
command is to be executed by passing the message body to standard input and forwarding
the filter’s output to the client.

3.2 Configuration Library

Since the parsing of configuration files and dealing with regular expressions is not an important
part of the networking experience, we have provided a library of utility functions to perform most
of the grunge work for you. The following functions are supported by the utility library:

e int proxy_init(prozy_t* p, const char* rcfile) : This command reads the configuration file
rcfile; it returns PROXY_OK if the file was successfully read, and otherwise prints error diag-
nostics on stdout and returns PROXY_ERROR. If the rcfile is NULL, the environment variable
PROXY_RCFILE is used to determine the configuration file name; if the variable isn’t defined,
a default filename proxyrc is used.

e int proxy_port(prozy_t* p) : This command returns the TCP port number where the proxy
should listen for incoming connections. Port number is in host order.

e int proxy_client (prozy-t* p, const char* host) : This command checks whether a particular
client is allowed to send HTTP requests. String host is the canonical host name from struct
hostent. The return value of proxy_client() is PROXY_OK if client is allowed to access the
Web, and PROXY_REFUSE if not. If a client is refused, error code 403 (Forbidden) should be
returned.

e int proxy_location(prozy_t* p, const char* loc, char* buf, size_t bufsiz) : This command
checks the HTTP location; it returns PROXY_OK if the location is neither blocked nor redi-
rected, PROXY_BLOCK if the location is on the blocked list, and PROXY_REDIRECT if a new
location is to be used instead. In the case of the URL being redirected, buf contains a zero-
terminated URL describing the new location. If the location is blocked, error 403 (Forbidden)
should be returned.

String loc should be constructed as follows: from the original HTTP URL, remove the scheme
prefix http: and port specifier (if any); loc should contain only the host name and absolute

CSC 257/CSC 457: Computer Networks — Fall 2001

path. The host name should be followed by a slash character, even if path in the original
URL is empty. If the return value indicates that a new location should be used, the result
string should be regarded as a full URL (without the http: prefix).

e int proxy hfield(prozy_t* p, const char* key, const char* value, char* buf, size_t bufsiz) :
This command rewrites request header fields.

The string key is the header keyword — the first token before the colon. The string value
points to the remainder of the header field, i.e., the characters after the colon. This function
returns PROXY_OK if the modification was successful, and PROXY_ERROR if the buffer was too
small. The new header value (without the key prefix) is available in buf.

e int proxy_filter(prozy-t* p, const char* media, char* buf, size_t bufsiz) :

This command checks to see whether a filter has been specified for media. It returns PROXY_0K
if no filter has been defined, PROXY_FILTER otherwise. If a filter has been installed, buf contains
a string describing the filter command to be executed. Note that the command is not split into
individual arguments — to execute the command, you should either construct the argument
list yourself or execute /bin/sh -¢ command.

The file proxy.h contains the C header file declarations and definitions needed to use the library
routines. The library code itself can be found in the files libproxy.a and librx.a.

Different versions of the library files can be created for different architectures and operating
systems. In general, it is important that you use only a single architecture throughout the project
(e.g., do all of your development on SunOS or Solaris or ...) or carefully clean up your links to
library files and .o files whenever you switch platforms. The directory currently contains the SunOS
(and Linux on the undergraduate side) versions of the library files.

4 Your Assignment

To complete this assignment, you need to implement an ACME proxy server that runs on a ma-
chine in the undergraduate (or graduate, if you are a CS graduate student) lab, and provides the
functionality described above.

The ACME proxy server project will constitute approximately 20% of your final course grade.
It is a major project, and you should get started on it immediately! Be sure to handin the source
code files, your makefile, and the executables. Be sure to handin every file that we will need in order
to recreate your executable, including all header files, .c files, and makefile’s. Your executable
should be called proxy. Also be sure to handin any external documentation that you've written
(e.g., a README file) and comment your code thoroughly and clearly.

To handin your assignment, you should -

e Put all the files relating to the assignment in one directory. Don’t put anything not related
to the assignment in that directory.

e Change to the directory and execute ”/u/cs257/bin/TURN_IN .7,
or alternatively, ”/u/cs257/bin/TURN_IN path_name”, where path name is the full path
name of the directory where your project files are. This will copy all the files in the stated
directory into the cs257 account. Don’t execute this command until you are really done,
because you cannot update the files once they have been created.

This project will be graded primarily on correctness, efficiency, and clarity of the code. Correct-
ness will constitute 75% of the project grade, while “software engineering” issues will constitute

CSC 257/CSC 457: Computer Networks — Fall 2001

the other 25% of the grade. The correctness portion of the grade will be based on the extent
to which your proxy server supports the specified operations and passes our tests. The software
engineering portion of the grade will be based on the “quality” of your solution, including such
issues as (i) clarity of your overall design and organization, (ii) clear documentation (both internal
and external), (iii) good coding practice (understandable variable names, well-organized functional
decomposition and modular design, etc.), and (iv) the presence (or lack thereof) of grossly inef-
ficient code and algorithms. Note that hacks that obscure the code will not be considered good
programming practice.

This project is a group project - groups can consist of one or two people. You are on your own
to form your groups — feel free to use the class newsgroup to help find partners. If you form a
two-person group, let me know who your partner is via e-mail. Part of your external documentation
should be a discussion of who did what part of the work. In addition, we strongly encourage you to
set up a time to meet with the TA to discuss your project design prior to starting on your serious
coding (i.e., a miniature design review).

5 Logistics

Your first step should be to read the relevant documentation cited above. Make sure you feel
comfortable with what this assignment entails before spending an inordinate amount of time writing
code. A little bit of careful design can go a long way!

Directory ~cs257/projects/proxy is the base directory for this project. You should start by
copying all the files in the skel directory in a directory where you intend to work.

Relevant documentation for this project is in the doc subdirectory. You might want to poll
it every now and then for new information. Additional documentation and links are on the class
home page, and I will use the class newsgroup for updates.

