CSC 257/457: Computer Networks — Fall 2001

Project Three

Assigned: Tuesday, November 20th, 2001
Due: Wednesday, December 5th, 2001, midnight.

In this project, you will build a simple file transfer program on top of RPC (Remote Procedure
Call Interface). You could also build it on top of your RDP protocol, if you prefer.

1 The File Transfer Program

Develop a simple file transfer application on top of RPC or your RDP protocol. You are required to
provide both the client and the server code for the program. The server should be able to save and
retrieve application files sent/requested by the client. The client should be able to send/request
files from the server. You can pattern your application after TF'TP (trivial file transfer program —
man pages for TFTP are available). However, the server must also implement access permissions,
and authenticate the client. For additional credit, you could also implement directory structures.

You should plan on designing a simple application with well-documented user functionality.
At the very least, you should implement a get, put, and 1s. Directory support would require
a pwd, mkdir, and cd. Remember, there are also authentication, security, and access permission
components.

You can limit yourself to implementing a personal secure file transfer program. In other words,
you will not have to worry about honoring access permissions for multiple users, or maintaining
multiple passwords/keys. Clients (and there can be multiple clients) will share the same file access
permissions as the server, so you can use the standard Unix file permissions to implement file access
permissions. In other words, if the server has permission to read and/or write a file, so does the
client. (The functionality your code will provide is secure access to files on remote machines where
the file system is not mounted).

This means that you do not necessarily have to create a separate temporary directory in /tmp
in order to emulate a file system managed by your server. You could work in any directory, and read
or write permission should be provided if the server has permission to read or write that directory
and/or file. As extra credit, you can allow moving around in the directory hierarchy.

The client DOES need to be authenticated, however, to ensure that other users, for example, do
not get remote access to your files. The server’s response must also be authenticated to ensure that
it has been sent by the server. The files must be transferred in a secure manner — in other words,
privacy must be ensured. In order to help you with this part of the project, I have provided you
with code that implements the DES algorithm, as well as routines that use cipher block chaining
to encrypt and decrypt the data. The code is in /u/cs257/projects/proj3/code/des.c.

If you are implementing your application on top of RDP, use of DES should be pretty straight-
forward. If you are implementing your application using RPC, you will need to modify the xdr
code generated for you in order to perform the encoding. (Please note that rerunning rpcgen will
regenerate the _xdr. c file, so make sure to save any modifications you have made!).

2 Remote Procedure Call

Remote Procedure Call (RPC) is a popular mechanism for structuring distributed applications
since it is based on the semantics of a local procedure call. Network File System (NFS) is one such
application, which is integrated into many operating systems.



CSC 257/457: Computer Networks — Fall 2001

The caller of a function is the client, the callee the server. From a client’s point of view, a
remote procedure call looks just like an ordinary procedure call. From the server’s point of view,
being called by a remote procedure should be the same as being called by a local caller.

RPC relies on lower level networking mechanisms such as UDP /IP or TCP/IP, and implements
client-server applications on top of them. Each RPC call sends a request to the server. When this
request arrives, the server calls a dispatch routine, performs whatever service is requested, sends
back the reply, and the procedure call returns to the client. Both client and server have ”stubs”
to invoke the network RPC library. The client stub is an interface between the client and the
RPC library, and effectively hides the network from the caller. Similarly, the server stub hides the
network from the server procedures that are to be invoked by remote clients.

SunRPC uses XDR (eXternal Data Representation) as the format of data sent across the net-
work (you have seen an introduction to this through Assignment 3). The conversion process is
called marshaling.

3 The rpcgen IDL Compiler

rpcgen is an Interface Definition Language compiler that takes an interface definition as its input
and spits out the stub code and the XDR routines. The XDR routines can convert data in a stream
into their network format and back to the local representation. rpcgen produces the interface
between the application and the underlying networking mechanisms. It hides the representation
and communication almost completely from you.

In order to use rpcgen, you need to learn the IDL it understands. A tutorial is available under
/u/csc257/projects/proj3, as is an example. The IDL is very similar to C in its syntax and data
types, with a few important differences.

rpcgen takes a .x file containing the interface definition as input. In this .x file, each RPC
procedure is uniquely defined by a 32-bit program number and procedure number. The program
number specifies a group of related remote procedures, each of which has a different procedure
number. Each program also has a version number. Sun Microsystems as the developers of ONC
(Open Network Computing Model of RPC) reserves the right to assign these program numbers.
For instance, NF'S uses program number 100003 and version number 2. For this project, just pick
a program number less than 100000 and version number 1.

The RPC protocol is independent of the underlying transport. It can run on top of UDP or
TCP. A command-line argument tells rpegen which protocol is to be used. At runtime, a system
daemon (portmap) assigns program numbers to available TCP/UDP port numbers dynamically.
We’ll run it on top of UDP. One disadvantage of this approach is that the data size cannot be
larger than 8 KBytes. However, you can make the assumption that your code does NOT have to
handle larger argument sizes.

The following is the list of files created by rpcgen from the interface definition in foo.x:

e foo_clnt.c: the client stub.
e foo_svc.c: the server stub.

e foo.h: the file containing definitions needed for the use of the interface. It should be included
by both the client and the server modules.

e foo xdr.c: the file converting procedure arguments and results into their network format
and vice-versa.

Clients are linked with foo_clnt.o and foo_xdr.o. Servers are linked with foo_svc.o and
foo_xdr.o.



CSC 257/457: Computer Networks — Fall 2001

4 Grading

This project is, once again, a group project (both for those taking the course as CS257 and for
those taking the course as CS457) - groups can consist of one or two people. You are, as before,
on your own to form your groups. If you form a two-person group, let me know who your partner
is via e-mail. Part of your external documentation should be a discussion of who did what part of
the work.

You should turn in

e your design document,
e the source code for your ftp server and client,
e 3 brief description of your experiments and test cases.

Be sure to include appropriate Makefiles and README files. Your Makefile should build the
executable ftp-server, and the executable ftp-client. Multiple clients should be allowed.
To handin your assignment, you should -

e Put all the files relating to the assignment in one directory. Don’t put anything not related
to the assignment in that directory.

e Change to the directory and execute ” /u/cs257/bin/TURN_IN .”,
or alternatively, ”/u/cs257/bin/TURN_IN path_name”, where path -name is the full path
name of the directory where your project files are. This will copy all the files in the stated
directory into the cs257 account. Don’t execute this command until you are really done,
because you cannot update the files once they have been created.



