
Morgan Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editor: Mark D. Hill, University of Wisconsin

CM& Morgan Claypool Publishers&

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com SYNTHESIS LECTURES ONCOMPUTER ARCHITECTURE

Mark D. Hill, Series Editor

ISBN: 978-1-60845-956-8

9 781608 459568

90000

Series ISSN: 1935-3235

SYNTHESIS LECTURES ONCOMPUTER ARCHITECTURE

SCOTT
SHARED-M

EM
ORY SYNCHRONIZATION

M
O
R
G
A
N

&
C
L
A
Y
P
O

O
L

Shared-Memory Synchronization
Michael L. Scott, University of Rochester
Since the advent of time sharing in the 1960s, designers of concurrent and parallel systems have
needed to synchronize the activities of threads of control that share data structures in memory. In
recent years, the study of synchronization has gained new urgency with the proliferation of multicore
processors, on which even relatively simple user-level programs must frequently run in parallel.

This lecture offers a comprehensive survey of shared-memory synchronization, with an emphasis
on “systems-level” issues. It includes sufficient coverage of architectural details to understand
correctness and performance on modern multicore machines, and sufficient coverage of higher-level
issues to understand how synchronization is embedded in modern programming languages.

The primary intended audience is “systems programmers”—the authors of operating systems,
library packages, language run-time systems, concurrent data structures, and server and utility
programs. Much of the discussion should also be of interest to application programmers who want
to make good use of the synchronization mechanisms available to them, and to computer architects
who want to understand the ramifications of their design decisions on systems-level code.

Shared-Memory
Synchronization

Michael L. Scott

Morgan Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editor: Mark D. Hill, University of Wisconsin

CM& Morgan Claypool Publishers&

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com SYNTHESIS LECTURES ONCOMPUTER ARCHITECTURE

Mark D. Hill, Series Editor

ISBN: 978-1-60845-956-8

9 781608 459568

90000

Series ISSN: 1935-3235

SYNTHESIS LECTURES ONCOMPUTER ARCHITECTURE

SCOTT
SHARED-M

EM
ORY SYNCHRONIZATION

M
O
R
G
A
N

&
C
L
A
Y
P
O

O
L

Shared-Memory Synchronization
Michael L. Scott, University of Rochester
Since the advent of time sharing in the 1960s, designers of concurrent and parallel systems have
needed to synchronize the activities of threads of control that share data structures in memory. In
recent years, the study of synchronization has gained new urgency with the proliferation of multicore
processors, on which even relatively simple user-level programs must frequently run in parallel.

This lecture offers a comprehensive survey of shared-memory synchronization, with an emphasis
on “systems-level” issues. It includes sufficient coverage of architectural details to understand
correctness and performance on modern multicore machines, and sufficient coverage of higher-level
issues to understand how synchronization is embedded in modern programming languages.

The primary intended audience is “systems programmers”—the authors of operating systems,
library packages, language run-time systems, concurrent data structures, and server and utility
programs. Much of the discussion should also be of interest to application programmers who want
to make good use of the synchronization mechanisms available to them, and to computer architects
who want to understand the ramifications of their design decisions on systems-level code.

Shared-Memory
Synchronization

Michael L. Scott

Morgan Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editor: Mark D. Hill, University of Wisconsin

CM& Morgan Claypool Publishers&

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com SYNTHESIS LECTURES ONCOMPUTER ARCHITECTURE

Mark D. Hill, Series Editor

ISBN: 978-1-60845-956-8

9 781608 459568

90000

Series ISSN: 1935-3235

SYNTHESIS LECTURES ONCOMPUTER ARCHITECTURE

SCOTT
SHARED-M

EM
ORY SYNCHRONIZATION

M
O
R
G
A
N

&
C
L
A
Y
P
O

O
L

Shared-Memory Synchronization
Michael L. Scott, University of Rochester
Since the advent of time sharing in the 1960s, designers of concurrent and parallel systems have
needed to synchronize the activities of threads of control that share data structures in memory. In
recent years, the study of synchronization has gained new urgency with the proliferation of multicore
processors, on which even relatively simple user-level programs must frequently run in parallel.

This lecture offers a comprehensive survey of shared-memory synchronization, with an emphasis
on “systems-level” issues. It includes sufficient coverage of architectural details to understand
correctness and performance on modern multicore machines, and sufficient coverage of higher-level
issues to understand how synchronization is embedded in modern programming languages.

The primary intended audience is “systems programmers”—the authors of operating systems,
library packages, language run-time systems, concurrent data structures, and server and utility
programs. Much of the discussion should also be of interest to application programmers who want
to make good use of the synchronization mechanisms available to them, and to computer architects
who want to understand the ramifications of their design decisions on systems-level code.

Shared-Memory
Synchronization

Michael L. Scott

Chapters 2
(background)
and 3.4
(memory
models).

Hardware Basics

...

...

... ...

...

... ...

...

L1

L2

L3

Processor 1 Processor n

Core 1 Core k

Global Interconnect

Memory Bank 1 Memory Bank m

...

...

... ...

...

... ...

...

L1

L2

L3

Processor 1 Processor n

Core 1 Core k

Global Interconnect

Memory Bank 1 Memory Bank n

l

l

l2 l1

l1 l2 l2
l1

...

...

... ...

...

... ...

...

L1

L2

L3

Processor 1 Processor n

Core 1 Core k

Global Interconnect

Memory Bank 1 Memory Bank m

26

Cache Coherence

A memory system is coherent if:
• P writes to X; no other processor writes to X; P reads X
 and receives the value previously written by P

• P1 writes to X; no other processor writes to X; sufficient
 time elapses; P2 reads X and receives value written by P1

• Two writes to the same location by two processors are
 seen in the same order by all processors – write serialization

Rajeev Balasubramonian
Associate Professor  
School of Computing  
University of Utah

03/27/12 slide 3 PCOD: Lecture 4
Per Stenström (c) 2008, Sally A. McKee (c) 2009

Semantics of Shared Memory

Memory accesses
form a consistent
serial order

Implications:
l Reads and writes are carried out atomically
l Memory accesses from each processor appear in the
serial order in the order of the program

03/27/12 slide 5 PCOD: Lecture 4
Per Stenström (c) 2008, Sally A. McKee (c) 2009

Sequential Consistency
(SC)

 “the result of the execution is
the same as if the operations of
all processors are executed in
some sequential order and the
operations of each individual
processor appear in the order
specified by its
program.” (Lamport, 1979)

lSC Execution: An execution of a program is SC if the results it
produces conform to any possible interleaving of program orders
lSC System: A system is SC if all possible executions on that
system is an SC execution

03/27/12 slide 10 PCOD: Lecture 4
Per Stenström (c) 2008, Sally A. McKee (c) 2009

Violations of SC:
Examples

P0: P1:
A:=1 B:=1
if B=0 then if A=0 then
 <critical section> <critical section>

P P

 M

shared bus

A
B

P P

general interconnect

M MA B

Two example systems:

Sequential consistency is preserved if memory operations
are carried out in program order

03/27/12 slide 11 PCOD: Lecture 4
Per Stenström (c) 2008, Sally A. McKee (c) 2009

Enforcing SC

P P

M

shared bus

A
B

Disallow bypassing
in the write buffer

P P

general interconnect

M MA B

Do not issue a new
request into the
interconnect
until the previous one is
performed (acknowledged)

03/27/12 slide 12 PCOD: Lecture 4
Per Stenström (c) 2008, Sally A. McKee (c) 2009

The Cache Coherence (CC)
Problem

The cache coherence problem: how to maintain the
illusion of a coherent shared address space

Most machines have multiple cached copies of data

Memory

P P P

C C C

32

Cache Coherence Protocols

• Directory-based: A single location (directory) keeps track
 of the sharing status of a block of memory

• Snooping: Every cache block is accompanied by the sharing
 status of that block – all cache controllers monitor the
 shared bus so they can update the sharing status of the
 block, if necessary

Ø Write-invalidate: a processor gains exclusive access of
 a block before writing by invalidating all other copies
Ø Write-update: when a processor writes, it updates other
 shared copies of that block

// finally i == j == 0

// initially x == y == 0

thread 1:
 x := 1
 i := y

thread 2:
 y := 1
 j := x

1:
2:

1:
2:?

Ordering Loop 1

33

Ordering Loop 2

34

// finally y2 == x3 == 0 and x2 == y3 == 1

// initially x == y == 0

thread 1:
 x := 1

thread 4:
 y := 11: 1:

thread 2:
 x2 := x
 y2 := y
1:
2:

thread 3:
 y3 := y
 x3 := x
1:
2:?

Memory Reordering

35

• Software
• compiler optimizations

• Processor
• pipelining -- out-of-order completion
• write buffers
• out-of-order issue

• System
• split-transaction buses
• multiple buses
• interleaved memory

• All of these obey single-threaded data dependences (only)

http://geekandpoke.typepad.com/.a/6a00d8341d3df553ef013485f6be4d970c-800wi

