
1

Shared Memory: A Look

Underneath

proc1 proc2 proc3 procN

Shared memory space

Physical Implementation

proc1 proc2 proc3 procN

Shared memory

cache1 cache2 cache3 cacheN

bus

Multicore Processors

Everywhere
The Multicore Trend

2004,

Prescott

Single-core

2012,

Tegra4

Quad-core

2012,

Xeon Phi

60-core

http://www.extremetech.com/wp-content/uploads/2012/07/Aubrey>I.jpg

http://img.clubic.com/00073094-photo-die-intel-prescott.jpg

http://images.bit-tech.net/content_images/2011/01/intel-sandy-bridge-review/sandy-bridge-die-

map.jpg

http://i1-news.sof tpedia-static.com/images/news2/NVIDIA-Tegra-4-Benchmark-Surf aces-Thanks-to-Project-Shield-Owner-2.jpg?1368004105

http://news.cnet.com/8301-1001_3-57569992-92/tileras-72-core-chip-doubles-down-on-multicore-approach/

2010,

Sandybridge

quad-core

2013, Tilera

72-core

57 58

59 60

2

Haswell Xeon E5 2699 V3

http://cdn4.wccftech.com/wp-content/uploads/2014/09/Xeon-E5-2600-V3-Die.jpg

2.3-3.66 GHz, 145W, 45M L3 cache,

2 sockets, 18 cores, 2 threads,

for a total of 72 hardware threads

Haswell: Logical Blocks

http://images.anandtech.com/doci/8730/1%20Die%20Config%2014-18C_678x452.png

Shared Memory Implementation

• Coherence - defines the behavior of reads and
writes to the same memory location
– ensuring that modifications made by a processor

propagate to all copies of the data

– Program order preserved

– Writes to the same location by different processors
serialized

• Synchronization - coordination mechanism

• Consistency - defines the behavior of reads and
writes with respect to access to other memory
locations
– defines when and in what order modifications are

propagated to other processors

Coherence

A multiprocessor memory system is coherent if the results
of any execution of a program are such that, for each
location, it is possible to construct a hypothetical serial
order of all operations to the location that is consistent
with the result of the execution and
– it ensures that modifications made by a processor propagate to

all copies of the data

– program order is preserved for each process in this hypothetical
order

– writes to the same location by different processors are serialized
and the value returned by each read is the value written by the
last write in the hypothetical order

61 62

63 64

3

Snoop-Based Coherence

• Makes use of a shared broadcast medium to
serialize events (all transactions visible to all
controllers and in the same order)
– Write update-based protocol

– Write invalidate-based (e.g., basic MSI, MESI
protocols)

• Cache controller uses a finite state machine
(FSM) with a handful of stable states to track the
status of each cache line

• Consists of a distributed algorithm represented
by a collection of cooperating FSMs

A Simple Invalidate-Based Protocol

- State Transition Diagram

Four-State MESI Protocol

From Parallel Computer Architecture: Culler, Singh, and Gupta

Correctness Requirements

• Need to avoid

– Deadlock – caused by a cycle of resource

dependencies

– Livelock – activity without forward progress

– Starvation – extreme form of unfairness

where one or more processes do not make

forward progress while others do

65 66

67 69

4

2/28/2022 CSC 2/456 70

Deadlock Characterization
Deadlock can arise if four conditions hold simultaneously:

• Mutual exclusion: only one process at a time can use a
resource

• Hold and wait: a process holding at least one resource is
waiting to acquire additional resources held by other processes

• No preemption: a resource can be released only voluntarily by
the process holding it, after that process has completed its
task

• Circular wait: there exists a set {P0, P1, …, Pn, P0} of waiting
processes such that
– P0 is waiting for a resource that is held by P1,
– P1 is waiting for a resource that is held by P2,
– …,
– Pn–1 is waiting for a resource that is held by Pn,
– and Pn is waiting for a resource that is held by P0.

Example Deadlock, Livelock, Starvation

proc1 proc2 proc3 procN

Shared memory

cache1 cache2 cache3 cacheN

bus

Problem: Bus Read for block B in M state while

waiting for bus grant due to PrRd of different block A

Solution: Continue snooping and handling requests

Problem: All processors attempt to write,

one obtains exclusive, before it writes, the line is stolen

Solution: Correct handshake/allow write to complete

Problem: Bus repeatedly handed to one processor

Solution: Bus arbitration

MESI Protocol with Transient

States

From Parallel Computer Architecture: Culler, Singh, and Gupta

Design Challenges

• Cache controller and tag design

• Non-atomic state transitions

• Serialization

• Cache hierarchies

• Split-transaction buses

70 71

72 73

5

Snoop-Based or Broadcast

Coherence
• Make use of a broadcast medium to

manage replicas

• Benefit: Low metadata requirements

• Challenge: High bandwidth requirements

proc1 proc2 proc3 procN

Shared memory

cache1 cache2 cache3 cacheN

bus

Solution: Directory-based Cache Coherence

Directory: maintain per-core sharer information to save bandwidth

Full map: associate sharing vector with tags of shared L2

P0 P1 P2 P3

Directory/Shared cache

tag

tag

tag

1000

0110

0001

tag 0000

tag Data tag Data Data tag Datatag

Data

Data

Data

Data

Block A Block B Block B Block C

Block A

Block B

Block C

Block D

Multiprocessor Interconnects

• Topology

• Routing algorithm

• Switching strategy (circuit vs. packet)

• Flow control mechanism

Interconnect Topologies

• Fully connected

– Single large switch

– Bus

• Linear arrays and rings

• Multi-dimensional meshes and tori

• Trees

• Multi-stage interconnection network: e.g.Butterfly

• Hypercube

https://www.researchgate.net/profile/Ali_Safaei/publication/232703417/figure/fig5/AS:393558906425345@1470843163078/Exam

ples-of-well-known-a-static-and-b-dynamic-interconnection-networks-topologies-5.png

74 75

76 77

6

Butterfly Network

Dally and Towles: https://dl.acm.org/doi/pdf/10.5555/2821589

Switching Strategy

• Circuit-switched: first packet sets up route,
subsequent packets follow route without any
header processing

• Packet-switched: each packet is independently
routed
– Store-and-forward: each hop receives all packets of a

message before forwarding it on

– Cut-through: each packet forwarded as soon as it is
received

– Virtual cut-through: cut-through routing, but buffer
packets when there is contention

– Wormhole routing: packet spread across multiple
hops, in effect holding a circuit open.

Metrics

• Hardware cost – number of wires, pin count, length of
wires, physical arrangement

• Topology diameter
– Length of maximum shortest path between any two nodes in the

network

• Latency
– Overhead+routing_delay+channel_occupancy(bandwidth)+conte

ntion_delay

• Bandwidth – local, global, bisection
– Bisection bandwidth

• Sum of bandwidths of minimum set of channels/links that, if
removed, partitions the network into 2 euqal unconnected sets of
nodes

Directory-Based Coherence

• Distribute memory, use point-to-point

interconnect for scalability

• Need to manage coherence for each

memory line – state stored in directory

– Simple memory-based (e.g., DASH, FLASH,

SGI Origin, MIT Alewife, HAL)

– Cache-based (linked list (e.g., Sequent

NUMA-Q, IEEE SCI)

78 79

80 81

7

Scalable Multiprocessor

Scalable Interconnection Network

Controller

Cache

PN

Controller

Cache

P0

Directories

Mem.Mem.

L1L1L1

Memory-based Directory Cache Coherence
• Directory:

Maintains per-core sharing information to save bandwidth

• Current Designs
Shadow tags: duplicate L1 tags,

look up to create sharing vector

+ support non-inclusive cache

- high lookup energy

Full map: associate sharing

vector with tags of shared L2

+ negligible lookup energy

- large area

tag tag

L1

tag tag

tagtag tag

Shadow tags dir.

tag tag tag tag

tag

tag tagtag tag

shared

L2

tag

tag

tag

tag

Full

map

dir.

1111

1000

0110

0001

Conventional Full Map Directory

Tag Data Vector of sharing

processors

(Sharing

pattern)

1 0 1 1 0 0 0 1

1 bit per processor per cache line

64-Byte cache line size, for 128 cores,

directory is 25% of the shared cache size
!

Simple Memory-based Directory

Coherence

• Advantage

– Precise sharing information

• Disadvantage

– Space/storage proportional to PxM

• Work-around for either width or height

– Increase cache block size

– 2-level protocol

– Limited pointer scheme

– Directory cache

82 83

84 85

8

e.g.,

Directory cache[ISCA’90];

Coarse vector[ICPP’90];

Pointers[ISCA’88]

e.g., Tagless

[MICRO’09]

Scaling directory designs

Tag Sharing vector

FIXED imprecision at

design time

Cache-Based Directory Coherence

• Home main memory contains a pointer to

the first sharer + state bits

• Pointers at each cache line to maintain a

doubly-linked list

• Advantage – reduced space overhead

• Disadvantage – serialized invalidates

(latency and occupancy)

Summary

• Non-atomic state transitions complicate

coherence implementation

• Directory protocols used to scale

processors to large core counts

• Relaxed consistency models allow

read/write reorderings

– Implications for the hardware

– Implications for the compiler

A Framework for Sharing Patterns

• Predictable vs. unpredictable

• Regular vs. irregular

• Coarse vs. fine-grain (contiguous vs. non-contiguous in
the address space)

• Near-neighbor vs. long range in an interconnection
topology

• In terms of invalidation patterns
– Read-only

– Producer-consumer

– Broadcast/multicast

– Migratory

– Irregular read-write

86 87

88 89

