
1

Distributed Transactions

Instructor: Sandhya Dwarkadas

University of Rochester

Software Development

https://software.intel.com/content/dam/develop/external/us/en/documents/sf12-arcs004-100-393551.pdf

Software Development
https://software.intel.com/content/dam/develop/external/us/en/documents/sf12-arcs004-100-393551.pdf

Software Development
https://software.intel.com/content/dam/develop/external/us/en/documents/sf12-arcs004-100-393551.pdf

1 2

3 4

2

Software Development
https://software.intel.com/content/dam/develop/external/us/en/documents/sf12-arcs004-100-393551.pdf

Want coarse grain locking effort for fine grain locking performance

Practical Problem I

Thread 1:

Write to a[]

Shared Array: a[]

Thread 2:

Write to a[]

Solution:

1 Spin lock

….

Coarsen-grained? Less lock ops, poor scalability, poor bandwidth.

Fine-grained? Better scalability, more lock cost, more bandwidth

Practical Problem II

Thread 1:

Read from a[] //parallel

Write to a[] // serialized

Shared Array: a[]

Solution:

1 R/W lock

2 Spin lock or mutex (worse in this case)

….

Thread 2:

Read from a[] //parallel

Write to a[] // serialized

Priority inversion

⚫ Occurs when a lower priority process is

preempted while holding a lock needed

by a high priority process

5 6

7 8

3

Bad priority inversion:

Mars Pathfinder

Data bus

High priority

bus

management

Low priority

meteorological

data collection

watchdog

Medium priority

Communication

task

Convoying

⚫ Situation where the processes wait in line

for the process ahead in the line to finish

some task

deadlock

P1 P2

L2

L1

Needs

Needs

Held by

Held by

The Complexity of Locking

– Deadlocks

– Priority Inversion

– Convoy Effect

– Composition and modularity

9 10

11 12

4

Database Transactions

• Modify multiple data items potentially at multiple
locations/by multiple processes as a single
atomic operation

• Transaction properties (ACID) –
– Atomic – happens indivisibly to the outside world

– Consistent – does not violate system invariants –
must hold before and after but not necessarily during

– Isolated (or serializable) – refers to multiple
simultaneous transactions – the final result must
appear as if each transaction occurred in some
sequential order

– Durable – once committed, the results become
permanent – no failure can undo the results

Classification of Transactions

• Flat – series of operations satisfying ACID

properties

• Nested – transaction logically divided into

sub-transactions

– Open vs. closed

• Distributed – data is distributed

(transaction could be flat)

Transaction Implementation

• Private workspace

– Operations performed on private copy of all

open files

• Writeahead log

– Modify in place but write a log of transaction

(id, old, and new values) BEFORE doing so

Concurrency Control

• Synchronize conflicting read and write

operations to ensure serializability

– Two-phase locking

– Timestamp ordering

• Pessimistic vs. optimistic

13 14

15 16

5

Two-Phase Locking

• Strict two-phase locking

– Release all locks at the same time

– Avoids cascaded aborts

• Problem: deadlocks

– Solution? Deadlock detection or canonical

ordering

All schedules of interleaved transactions

can be proven to be serializable

Tanenbaum and van Steen: Figure 5-26

Timestamp Ordering

• Assign each transaction a unique

timestamp (Lamport’s)

• Each data item has a (most recent) read

and a (most recent) write timestamp

• Lowest timestamp processed first

• Pessimistic timestamp ordering

– Abort on a conflict as reads and writes occur

• Optimistic timestamp ordering

– Delay check until time of commit (best with

private workspaces)

Pessimistic Timestamp Ordering

• Read(T,x)

– Tts < tsWR(x) → abort

– Tts > tsWR(x) → perform

– tsRD (x) = max{Tts, tsRD (x)}

• Write(T,x)

– Tts < tsRD(x) → abort

– Tts > tsRD(x), tsWR(x) → perform

– tsWR (x) = max{Tts, tsWR (x)}

Distributed Commit

Operation must be performed by each

member of a process group or none at all

– Established by means of a coordinator

• 1-Phase commit?

– No way to tell the coordinator that the

operation cannot be performed

• 2-Phase commit

• 3-Phase commit

17 18

19 20

6

Two-Phase Commit

Tanenbaum and van Steen Figure 7.17:

Finite state machines for coordinator (a) and participant (b)

Two-Phase Commit
• Phase 1

– Step 1: vote request

– Step 2 – return vote commit or abort

• Phase 2 – global commit or abort

Problem: failures when blocked waiting for

incoming messages

– (a) Participant in INIT state; (b) coordinator in WAIT

state; (c) participant in READY state

Solutions: timeout; ABORT under (a) and (b), poll

other participants under (c)

Remaining problem: must wait for coordinator

under (c) if all participants in READY state

Three-Phase Commit

Tanenbaum and van Steen Figure 7-21:

Finite state machines for coordinator (a) and participant (b)

Three-Phase Commit

• No state from which it is possible to transition

directly to either COMMIT or ABORT

• No state from which a final decision cannot be

made on failure and from which a transition to

COMMIT is possible

• No crashed process could be in COMMIT if any

participant is in READY state; or in INIT or

ABORT if any participant is in PRE-COMMIT

– Allows a participant to use a majority to decide

whether to ABORT (if majority is in READY) or

COMMIT (if majority is in PRE-COMMIT) when

coordinator is unresponsive

21 22

23 24

