
1

Patterns of Parallelism

• Decomposition views
– Data (static) vs. recursive (dynamic) decomposition

– Exploratory decomposition vs. speculative decomposition
• Exploratory - Parallel formulation may perform different amounts of work

resulting in super or sub-linear speedup

• Speculative - Schedule tasks even when they may have dependencies

• Data parallelism: all processors do the same thing on different data.
– Regular

– Irregular

• Task parallelism: processors do different tasks or dynamically pick up
data to compute on

– Task queue

– Pipelines

Task Parallelism

• Each process performs a different task.

• Two principal flavors:

– pipelines

– task queues

• Program Examples: PIPE (pipeline), TSP

(task queue).

Pipeline

• Often occurs with image processing

applications, where a number of images

undergo a sequence of transformations.

• E.g., rendering, clipping, compression, etc.

Sequential Program

for(i=0; i<num_pic, read(in_pic[i]); i++) {

int_pic_1[i] = trans1(in_pic[i]);

int_pic_2[i] = trans2(int_pic_1[i]);

int_pic_3[i] = trans3(int_pic_2[i]);

out_pic[i] = trans4(int_pic_3[i]);

}

44 45

46 47

2

Parallelizing a Pipeline

• For simplicity, assume we have 4

processors (i.e., equal to the number of

transformations).

• Furthermore, assume we have a very large

number of pictures (>> 4).

Sequential vs. Parallel Execution

• Sequential

• Parallel

(Color -- picture; horizontal line -- processor).

Parallelizing a Pipeline (part 1)

Processor 1:

for(i=0; i<num_pics, read(in_pic[i]); i++) {

int_pic_1[i] = trans1(in_pic[i]);

signal(event_1_2[i]);

}

Parallelizing a Pipeline (part 2)

Processor 2:

for(i=0; i<num_pics; i++) {

wait(event_1_2[i]);

int_pic_2[i] = trans2(int_pic_1[i]);

signal(event_2_3[i]);

}

Same for processor 3

48 49

50 51

3

Parallelizing a Pipeline (part 3)

Processor 4:

for(i=0; i<num_pics; i++) {

wait(event_3_4[i]);

out_pic[i] = trans4(int_pic_3[i]);

}

Another Sequential Program

for(i=0; i<num_pic, read(in_pic); i++) {

int_pic_1 = trans1(in_pic);

int_pic_2 = trans2(int_pic_1);

int_pic_3 = trans3(int_pic_2);

out_pic = trans4(int_pic_3);

}

Can we use same parallelization?

Processor 2:

for(i=0; i<num_pics; i++) {

wait(event_1_2[i]);

int_pic_2 = trans1(int_pic_1);

signal(event_2_3[i]);

}

Same for processor 3

Can we use same parallelization?

• No, because of anti-dependence between

stages, there is no parallelism

• Another example of privatization

• Costly in terms of memory

52 53

54 55

4

In-between Solution

• Use n>1 buffers between stages.

• Block when buffers are full or empty

Perfect Pipeline

• Sequential

• Parallel

(Color -- picture; horizontal line -- processor).

Things are often not that perfect

• One stage takes more time than others

• Stages take a variable amount of time

• Extra buffers can provide some cushion

against variability

56 57

58 59

5

Patterns of Parallelism

• Decomposition views
– Data (static) vs. recursive (dynamic) decomposition

– Exploratory decomposition vs. speculative decomposition
• Exploratory - Parallel formulation may perform different amounts of work

resulting in super or sub-linear speedup

• Speculative - Schedule tasks even when they may have dependencies

• Data parallelism: all processors do the same thing on different data.
– Regular

– Irregular

• Task parallelism: processors do different tasks or dynamically pick up
data to compute on

– Task queue

– Pipelines

Exploratory Decomposition

Example: A 15-tile puzzle

Sequence of 3 moves leads from initial state (a) to final state (d)

In general: explore all possible moves to arrive at solution

Exploratory Decomposition

Explore state space by creating independent

tasks to follow each possible move from

current state

Exploratory Decomposition

Speedup
• Parallel formulation may perform more or

less work depending on when solution is

found

– Superlinear or sublinear speedup

Solution found

Unit of work=x

Serial work=x+4x

Parallel work=x+4*4x

Serial work=x+9x+x

Parallel work=x+4x

60 61

62 63

6

TSP (Traveling Salesman)

• Goal:

– given a list of cities, a matrix of distances

between them, and a starting city,

– find the shortest tour in which all cities are

visited exactly once.

• Example of an NP-hard search problem.

• Algorithm: branch-and-bound.

Branching

• Initialization:

– go from starting city to each of remaining cities

– put resulting partial path into priority queue,
ordered by its current length.

• Further (repeatedly):

– take head element out of priority queue,

– expand by each one of remaining cities,

– put resulting partial path into priority queue.

Finding the Solution

• Eventually, a complete path will be found.

• Remember its length as the current shortest

path.

• Every time a complete path is found, check

if we need to update current best path.

• When priority queue becomes empty, best

path is found.

Using a Simple Bound

• Once a complete path is found, we have a

lower bound on the length of shortest path

• No use in exploring partial path that is

already longer than the current lower bound

• Better bounding methods exist …

64 65

66 67

7

Sequential TSP: Data Structures

• Priority queue of partial paths.

• Current best solution and its length.

• For simplicity, we will ignore bounding.

Sequential TSP: Code Outline

init_q(); init_best();

while((p=de_queue()) != NULL) {

for each expansion by one city {

q = add_city(p);

if(complete(q)) { update_best(q) };

else { en_queue(q) };

}

}

Parallel TSP: Possibilities

• Have each process do one expansion

• Have each process do expansion of one
partial path

• Have each process do expansion of multiple
partial paths

• Issue of granularity/performance, not an
issue of correctness.

• Assume: process expands one partial path.

Parallel TSP: Synchronization

• True dependence between process that puts

partial path in queue and the one that takes

it out.

• Dependences arise dynamically.

• Required synchronization: need to make

process wait if q is empty.

68 69

70 71

8

Parallel TSP: First Cut (part 1)

process i:

while((p=de_queue()) != NULL) {

for each expansion by one city {

q = add_city(p);

if complete(q) { update_best(q) };

else en_queue(q);

}

}

Parallel TSP: First cut (part 2)

• In de_queue: wait if q is empty

• In en_queue: signal that q is no longer

empty

Parallel TSP

process i:

while((p=de_queue()) != NULL) {

for each expansion by one city {

q = add_city(p);

if complete(q) { update_best(q) };

else en_queue(q);

}

}

Parallel TSP: More synchronization

• All processes operate, potentially at the

same time, on q and best.

• This must not be allowed to happen.

• Critical section: only one process can

execute in critical section at once.

72 73

74 75

9

Parallel TSP: Critical Sections

• All shared data must be protected by critical

section.

• Update_best must be protected by a critical

section.

• En_queue and de_queue must be protected

by the same critical section.

Parallel TSP

process i:

while((p=de_queue()) != NULL) {

for each expansion by one city {

q = add_city(p);

if complete(q) { update_best(q) };

else en_queue(q);

}

}

Termination condition

• How do we know when we are done?

• All processes are waiting inside de_queue.

• Count the number of waiting processes

before waiting.

• If equal to total number of processes, we are

done.

76 77

78 79

10

Programming Models

• Standard models of parallelism

– shared memory (Pthreads)

– message passing (MPI)

– data parallel (Fortran 90 and HPF)

– shared memory + data parallel (OpenMP)

– Remote procedure call

– Global address space (UPC)

Shared Memory

proc1 proc2 proc3 procN

Shared memory space

The Performance Transparency

Challenge

• Shared hardware resource access

– Functional units, caches, on- and off-chip
interconnects, memory

• Shared software resource access

– E.g., locks or shared data

• Non-uniform access latencies

Modern multicore systems…

Source: http://www.anandtech.com/show/7003/the-haswell-review-intel-core-i74770k-i54560k-tested/5

10s to 100s of hardware contexts

A Data-Centric View of a Modern

Multicore

Inter-processor interconnect

Socket 1

DRAM

Shared Last Level Cache

Socket 2

9 10

L1 Cache

L2
Cache

11
12
L1 Cache

L2
Cache

13
14
L1 Cache

L2
Cache

15
16
L1 Cache

L2
Cache

…….
.

Shared Last Level Cache

L1 Cache

L2
Cache

3 4

L1 Cache

L2
Cache

5 6

L1 Cache

L2
Cache

7 8

L1 Cache

L2
Cache

…….
.

DRAM

1 2

80 81

82 83

11

Performance Transparency Challenge:

Resource Sharing/Contention

Inter-processor interconnect

Socket 1

DRAM

Shared Last Level Cache

Socket 2

9 10

L1 Cache

L2
Cache

11
12
L1 Cache

L2
Cache

13
14
L1 Cache

L2
Cache

15
16
L1 Cache

L2
Cache

…….
.

Shared Last Level Cache

L1 Cache

L2
Cache

3 4

L1 Cache

L2
Cache

5 6

L1 Cache

L2
Cache

7 8

L1 Cache

L2
Cache

…….
.

DRAM

Problem: Simultaneous multi-threading

1 2

Performance Transparency Challenge:

Resource Sharing/Contention

Inter-processor interconnect

Socket 1

DRAM

Shared Last Level Cache

Socket 2

9 10

L1 Cache

L2
Cache

11
12
L1 Cache

L2
Cache

13
14
L1 Cache

L2
Cache

15
16
L1 Cache

L2
Cache

…….
.

Shared Last Level Cache

L1 Cache

L2
Cache

3 4

L1 Cache

L2
Cache

5 6

L1 Cache

L2
Cache

7 8

L1 Cache

L2
Cache

…….
.

DRAM

Problem: Intra-socket resource sharing

1 2

Performance Transparency Challenge:

Resource Sharing/Contention

Inter-processor interconnect

Socket 1

DRAM

Shared Last Level Cache

Socket 2

9 10

L1 Cache

L2
Cache

11
12
L1 Cache

L2
Cache

13
14
L1 Cache

L2
Cache

15
16
L1 Cache

L2
Cache

…….
.

Shared Last Level Cache

L1 Cache

L2
Cache

3 4

L1 Cache

L2
Cache

5 6

L1 Cache

L2
Cache

7 8

L1 Cache

L2
Cache

…….
.

DRAM

Problem: Inter-socket resource sharing

1 2

Performance Transparency Challenge:

Non-Uniform Access Latencies

Ref: https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf

Inter-processor
interconnect

Socket 1

220 Cycles

100 – 300 Cycles

Socket 2

CPU

L1 Cache

L2
Cache

CPU

L1 Cache

L2
Cache

CPU

L1 Cache

L2
Cache

CPU

L1 Cache

L2
Cache

…….
.

40 Cycles

CPU

4 Cycles

10
Cycles

CPU

L1 Cache

65 – 75
Cycles

CPU

L1 Cache

L2
Cache

CPU

L1 Cache

L2
Cache

…….
.

130 Cycles

Problem: Communication costs a function of thread/data

placement

84 85

86 87

12

Impact of Thread Placement on Data

Sharing Costs

Ref: https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf

Inter-processor
interconnect

Socket 1

220 Cycles

100 – 300 Cycles

Socket 2

CPU

L1 Cache

L2
Cache

CPU

L1 Cache

L2
Cache

CPU

L1 Cache

L2
Cache

CPU

L1 Cache

L2
Cache

…….
.

40 Cycles

CPU

4 Cycles

10
Cycles

CPU

L1 Cache

65 – 75
Cycles

CPU

L1 Cache

L2
Cache

CPU

L1 Cache

L2
Cache

…….
.

130 Cycles

Impact of Thread Placement on Data

Sharing Costs

Ref: https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf

Inter-processor
interconnect

Socket 1

220 Cycles

100 – 300 Cycles

Socket 2

CPU

L1 Cache

L2
Cache

CPU

L1 Cache

L2
Cache

CPU

L1 Cache

L2
Cache

CPU

L1 Cache

L2
Cache

…….
.

40 Cycles

CPU

4 Cycles

10
Cycles

CPU

L1 Cache

65 – 75
Cycles

CPU

L1 Cache

L2
Cache

CPU

L1 Cache

L2
Cache

…….
.

130 Cycles

Impact of Thread Placement on Data

Sharing Costs

Ref: https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf

Inter-processor
interconnect

Socket 1

220 Cycles

100 – 300 Cycles

Socket 2

CPU

L1 Cache

L2
Cache

CPU

L1 Cache

L2
Cache

CPU

L1 Cache

L2
Cache

CPU

L1 Cache

L2
Cache

…….
.

40 Cycles

CPU

4 Cycles

10
Cycles

CPU

L1 Cache

65 – 75
Cycles

CPU

L1 Cache

L2
Cache

CPU

L1 Cache

L2
Cache

…….
.

130 Cycles

Acknowledgements

Slides reflect content from Willy Zwaenepoel

and from Grama/Gupta/Karypis/Kumar that

accompany their corresponding

course/textbooks and have been adapted to

suit the content of this course

88 89

90 155

