
1

Parallel and Distributed Systems

Instructor: Sandhya Dwarkadas

Department of Computer Science

University of Rochester

• What is a parallel computer?

– “A collection of processing elements that

communicate and cooperate to solve large

problems fast”

• What is a distributed system?

– “A collection of independent computers that

appear to its users as a single coherent system”

Why Parallel or Distributed

Computing?

• Fundamentally limited by the speed of a

sequential processor

• Resource sharing

• Information exchange

• Collaboration

Programming Models

• Standard models of parallelism

– shared memory (Pthreads)

– message passing (MPI)

– data parallelism (Fortran 90 and HPF)

– shared memory + data parallelism (OpenMP)

2

Why is Parallel Computing Hard?

• Amdahl’s law – insufficient available
parallelism

– Speedup = 1/(fraction_enhanced/speedup + (1-
fraction_enhanced)

• Overhead of communication and
coordination

• Portability – knowledge of underlying
architecture often required

Steps in the Parallelization Process

• Decomposition into tasks

• Assignment to processes

• Orchestration – communication of data,

synchronization among processes

Basics of Parallelization

• Dependence analysis

• Synchronization

– Events

– Mutual exclusion

• Parallelism patterns

Parallel Processing Issues

• Data sharing

• Process coordination

• Distributed (NUMA) vs. centralized (UMA)

memory

• Connectivity

• Fault tolerance

Correctness and performance issues: deadlock, livelock, starvation

3

Shared Memory Implementation

• Coherence - defines the behavior of reads and writes to
the same memory location

– ensuring that modifications made by a processor propagate
to all copies of the data

– Program order preserved

– Writes to the same location by different processors serialized

• Synchronization - coordination mechanism

• Consistency - defines the behavior of reads and writes
with respect to access to other memory locations

– defines when and in what order modifications are
propagated to other processors

Shared Memory Hardware

(Snoopy-Based Coherence)

proc1 proc2 proc3 procN

Shared memory

cache1 cache2 cache3 cacheN

bus

Shared Memory Hardware

(Directory-Based NUMA)

proc1 proc2 proc3 procN

cache1 cache2 cache3 cacheN

Network

Memory
Memory Memory Memory

CA CA CA CA

Example Interconnect Topologies

• Criteria

– Bandwidth (per link, bisection, total)

– Latency (average diameter)

– Cost (total links, ports/switches)

2D-Grid
2D-Torus

P1

P2

P3

P4

P5

P6

P7

P0000

001

010

011

100

101

110

111 111

110

101

100

011

010

001

000

Butterfly (Omega)

4

Basic Hardware Mechanisms for

Synchronization

• Test-and-set – atomic exchange

• Fetch-and-increment – returns value and

atomically increments it

• Load-locked/store conditional – pair of

instructions – deduce atomicity if second

instruction returns correct value

Software Synchronization

Algorithms

• Locks - test&test&set, ticket, array-based

queue, MCS (linked list)

• Barriers – centralized/sense-reversing,

software combining trees, tournament,

dissemination

• Lock-free, non-blocking, wait-free

properties

Sequential Consistency

• ``A system is sequentially consistent if the result

of any execution is the same as if the operations of

all the processors were executed in some

sequential order, and the operations of each

individual processor appear in this sequence in the

order specified by its program.'' [Lamport 79]

– In practice, this means that every write must be seen on

all processors before any succeeding read or write can

be issued

Consistency Model Classification

• Models vary along the following

dimensions

– Program order (for each processor)

– Write atomicity

5

Distributed Memory Hardware
Software Distributed Shared

Memory (S-DSM)

Cluster-Based Servers

• Large Internet data centers (Google,

Microsoft, …)

– A form of parallel computing

– Customized parallel programming model

(MapReduce)

– A distributed system

• Consistency, reliability, scalability, availability

– Power management, network topology, error

monitoring

Dependable Systems

• Availability – most likely working at any
instant

• Reliability – run continuously without
failure (increase time interval between
failures)

• Safety – nothing catastrophic happened on
temporary failures

• Maintainability – ease of repair

6

Faults and Failures

• Fault – cause of an error that might lead to failure
– Transient

– Intermittent

– Permanent

• Failure models
– Crash (fail-stop)

– Omission

– Timing

– Response (value or state is incorrect)

– Byzantine or arbitrary

Agreement in Faulty Systems

• A hard problem

– Perfect processes, unreliable communication

• E.g., the two-army problem

– Unreliable processes, perfect communication

• E.g., the Byzantine generals’ problem

Distributed Systems Issues

• Concurrent access – simultaneous access by

multiple users to multiple resources

– Scalability – size, geography, administration

• Reliability – time interval between failures

– Fault transparency

Distributed Systems

Implementation

• Logical versus physical clocks

– Lamport and vector timestamps

• Distributed snapshots

– Consistent global state

• Coordinator election

• Mutual exclusion

7

Logical Clocks

Agreement on ordering of events rather than what time it is is
what matters

• Lamport Timestamps: partial order

– “happened-before” relation “”, causal ordering, or potential
causal ordering

• Transitive relation

– Assign every event a time value C(a) such that if a b then C(a)
< C(b) – can be captured numerically through a monotonically
increasing software counter

– Lamport’s solution for message ordering

• Each message carries sending time

• Receiver’s clock is set to the greater of its own clock or the sender’s
clock and then incremented by 1

• Between every two events, the clock must tick at least once

Vector Timestamps

• Lamport timestamps do not imply causality

• Solution: vector timestamps: captures the

notion of causality in addition to

concurrency

– Maintain a vector clock with n integers for n

processes

Global State Determination

• Example uses: deadlock or termination

detection

• Solution: distributed snapshot (Chandy and

Lamport 1985)

– Important property: consistent global state/cut

– Termination detection: snapshot in which all

channels are empty

Transactions

• Modify multiple data items potentially at multiple
locations/by multiple processes as a single atomic
operation

• Transaction properties (ACID) –
– Atomic – happens indivisibly to the outside world

– Consistent – does not violate system invariants – must
hold before and after but not necessarily during

– Isolated (or serializable) – refers to multiple
simultaneous transactions – the final result must appear
as if each transaction occurred in some sequential order

– Durable – once committed, the results become
permanent – no failure can undo the results

8

Distributed Transactions

• ACID properties

• Concurrency control

– Two-phase locking

– Pessimistic vs. optimistic timestamp ordering

• Distributed commit

– Two-phase vs. three-phase commit

Group Communication

• Virtual synchrony – message multicast to

group view G is reliably delivered to each

non-faulty process in G or to none.

• Unordered vs. FIFO-ordered vs. causally-

ordered vs. totally-ordered message delivery

• Scalable reliable multicast

Fault Tolerance

• Checkpointing with rollback recovery

– Independent checkpointing

– Coordinated checkpointing

• Two-phase blocking vs. distributed snapshots (non-
blocking)

– Communication-induced checkpointing

• Log-based recovery

– Execution of a failed process during recovery is
identical to its pre-failure execution

Course Recap

• Basics of parallelization: dependences,
synchronization, patterns of parallelism

• Parallel languages/models: PGAS, GPGPU, MPI,
OpenMP, Cilk, pthreads, map-reduce

• Coherence, synchronization, and consistency in
hardware and software

• Transactional memory

• Fault tolerance and recovery

• Scalability and group communication

