
1

Distributed Systems: 

Time and Global States

• What is a parallel computer?

– “A collection of processing elements that 

communicate and cooperate to solve large 

problems fast”

• What is a distributed system?

– “A collection of independent computers that 

appear to its users as a single coherent 

system”

Distributed Systems

A collection of independent (autonomous) computers that 
appear as a single coherent system
– E.g., world wide web, distributed file systems

• Properties
– Transparency

• Access, location, migration, relocation, replication, concurrency, failure, 
persistence

– Scalability
• Size (users and resources), geographic extent, administrative extent

– Availability

– Reliability

– Serviceability (manageability)

– Safety

• Issues: communication, synchronization, consistency, 
fault tolerance

Time: Physical Clocks

A precisely machined quartz crystal that 

oscillates at a well-defined frequency 

when kept under tension

– Timer: add a counter and a holding register; 

decrement counter at each oscillation; when 

0, generate interrupt and reload counter from 

holding register

– Each interrupt called one clock tick

• Problem: clock skew
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Clock Drift

Time (Reference, e.g., UTC, Universal Coordinated Time)
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Maximum drift rate ρ such that 1-ρ<= dC/dt <= 1+ρ

Physical Clock Synchronization 

Algorithms

• Issues

– Time should not run backward

– Must account for communication delays

• Possible algorithms

– Cristian’s algorithm – request time from server

– Berkeley algorithm – server requests time, 

determines an average taking roundtrip into 

account, sends back clock adjustment

– Averaging algorithm – distributed algorithm, 

uses broadcast/multicast

NTP: Network Time Protocol

• Internet-based time distribution

• Network of time servers organized in a hierarchy 

(primary, secondary, …)

• Can use one of several modes (multicast, 

procedure call (similar to Cristian’s), symmetric)

• Phase lock loop model based on observation of 

drift rate

• Accuracy – 10s of msecs over the Internet, 1 

msec on LAN

Usage of Synchronized Clocks

• Examples – at-most-once delivery, cache consistency, 

authentication, atomic transaction commit

• At-most-once-delivery [Liskov’93]

– Timestamp every message along with connection id

– Record most recent timestamp seen for each connection in a table

– Periodically purge table to remove timestamps <= CurrentTime –

MaxLifetime – MaxClockSkew; maintain G, the newest such timestamp

– Periodically (every ∆T) save P=CurrentTime+∆T on disk 

– To avoid duplicate message receipt
• Discard messages w/ timestamps <= the most recent for a connection id in table 

• Discard messages w/ timestamps older than G from connection ids not in table

• Delay (or discard) messages with timestamp > P

– On reboot, initialize G to disk value

– Discard messages older than G
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Logical Clocks: 

Lamport Timestamps
Agreement on ordering of events rather than what time it is 

is what matters

• Lamport Timestamps: partial order
– “happened-before” relation “→”, causal ordering, or potential 

causal ordering 

• Transitive relation

– Assign every event a time value C(a) such that if a → b then 
C(a) < C(b) – can be captured numerically through a 
monotonically increasing software counter

– Lamport’s solution for message ordering

• Each message carries sending time

• Receiver’s clock is set to the greater of its own clock or the sender’s 
clock and then incremented by 1

• Between every two events, the clock must tick at least once

Example Application: Totally 

Ordered Multicast

• Use Lamport’s solution to advance each 

processor’s logical clock

• Send each message to each processor

• Acknowledge each message and send ack 

to each processor in the multicast group

Totally-Ordered Multicast

• Assumptions: 

– Messages from the same sender received in order

– No messages are lost

– No two messages will have the same timestamp

– Place messages in local queue in timestamp order
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Vector Timestamps

• Lamport timestamps do not imply causality

• Solution: vector timestamps: captures the 

notion of causality in addition to 

concurrency

– Maintain a vector clock with n integers for n 

processes
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Vector Timestamps

• Pi maintains a vector Vi such that the following 
two properties are maintained:
– Vi[i] is the number of events that have occurred so far 

at Pi

– If Vi[j] = a then Pi know that a events have occurred at 
Pj

• When Pi receives a timestamp t on a message, 
Vi[j] is set to max(Vi[j],t[j]) for all j != I
– V<=V’ iff V[j] <= V’[j] for all j

– V = V’ iff V[j] = V’[j] for all j

– V < V’ iff V <= V’ and V!= V’

Lamport vs. Vector Timestamps
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Causally Ordered Multicast Using 

Vector Timestamps

• Maintained by 

– Incrementing Vi[i] on every event

– Piggy-backing Vi on every message

• In order to maintain causal order, message r 

from Process Pj delivered only if the following 

conditions are met:

– vtj(r)[j] = Vk[j]+1 – r is the next message expected 

from Pj

– vtj(r)[i]<=Vk[i] for all i≠j – Pk has seen all messages 

seen by Pj

Time

• Physical clocks 

– Synchronization challenges

• Logical clocks

– Lamport timestamps

– Vector timestamps
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