
1

Distributed Systems:

Time and Global States

• What is a parallel computer?

– “A collection of processing elements that

communicate and cooperate to solve large

problems fast”

• What is a distributed system?

– “A collection of independent computers that

appear to its users as a single coherent

system”

Distributed Systems

A collection of independent (autonomous) computers that
appear as a single coherent system
– E.g., world wide web, distributed file systems

• Properties
– Transparency

• Access, location, migration, relocation, replication, concurrency, failure,
persistence

– Scalability
• Size (users and resources), geographic extent, administrative extent

– Availability

– Reliability

– Serviceability (manageability)

– Safety

• Issues: communication, synchronization, consistency,
fault tolerance

Time: Physical Clocks

A precisely machined quartz crystal that

oscillates at a well-defined frequency

when kept under tension

– Timer: add a counter and a holding register;

decrement counter at each oscillation; when

0, generate interrupt and reload counter from

holding register

– Each interrupt called one clock tick

• Problem: clock skew

1 2

3 4

2

Clock Drift

Time (Reference, e.g., UTC, Universal Coordinated Time)

Fast clock

Slow clock

C
lo

c
k
 t
im

e
,
C

Maximum drift rate ρ such that 1-ρ<= dC/dt <= 1+ρ

Physical Clock Synchronization

Algorithms

• Issues

– Time should not run backward

– Must account for communication delays

• Possible algorithms

– Cristian’s algorithm – request time from server

– Berkeley algorithm – server requests time,

determines an average taking roundtrip into

account, sends back clock adjustment

– Averaging algorithm – distributed algorithm,

uses broadcast/multicast

NTP: Network Time Protocol

• Internet-based time distribution

• Network of time servers organized in a hierarchy

(primary, secondary, …)

• Can use one of several modes (multicast,

procedure call (similar to Cristian’s), symmetric)

• Phase lock loop model based on observation of

drift rate

• Accuracy – 10s of msecs over the Internet, 1

msec on LAN

Usage of Synchronized Clocks

• Examples – at-most-once delivery, cache consistency,

authentication, atomic transaction commit

• At-most-once-delivery [Liskov’93]

– Timestamp every message along with connection id

– Record most recent timestamp seen for each connection in a table

– Periodically purge table to remove timestamps <= CurrentTime –

MaxLifetime – MaxClockSkew; maintain G, the newest such timestamp

– Periodically (every ∆T) save P=CurrentTime+∆T on disk

– To avoid duplicate message receipt
• Discard messages w/ timestamps <= the most recent for a connection id in table

• Discard messages w/ timestamps older than G from connection ids not in table

• Delay (or discard) messages with timestamp > P

– On reboot, initialize G to disk value

– Discard messages older than G

5 6

7 8

3

Logical Clocks:

Lamport Timestamps
Agreement on ordering of events rather than what time it is

is what matters

• Lamport Timestamps: partial order
– “happened-before” relation “→”, causal ordering, or potential

causal ordering

• Transitive relation

– Assign every event a time value C(a) such that if a → b then
C(a) < C(b) – can be captured numerically through a
monotonically increasing software counter

– Lamport’s solution for message ordering

• Each message carries sending time

• Receiver’s clock is set to the greater of its own clock or the sender’s
clock and then incremented by 1

• Between every two events, the clock must tick at least once

Example Application: Totally

Ordered Multicast

• Use Lamport’s solution to advance each

processor’s logical clock

• Send each message to each processor

• Acknowledge each message and send ack

to each processor in the multicast group

Totally-Ordered Multicast

• Assumptions:

– Messages from the same sender received in order

– No messages are lost

– No two messages will have the same timestamp

– Place messages in local queue in timestamp order

P0

P1

1

1

2 3 4

2 3 4

Vector Timestamps

• Lamport timestamps do not imply causality

• Solution: vector timestamps: captures the

notion of causality in addition to

concurrency

– Maintain a vector clock with n integers for n

processes

9 10

11 12

4

Vector Timestamps

• Pi maintains a vector Vi such that the following
two properties are maintained:
– Vi[i] is the number of events that have occurred so far

at Pi

– If Vi[j] = a then Pi know that a events have occurred at
Pj

• When Pi receives a timestamp t on a message,
Vi[j] is set to max(Vi[j],t[j]) for all j != I
– V<=V’ iff V[j] <= V’[j] for all j

– V = V’ iff V[j] = V’[j] for all j

– V < V’ iff V <= V’ and V!= V’

Lamport vs. Vector Timestamps

a b

c

d

e f

P1

P2

P3

1,(1,0,0) 2,(2,0,0)

3,(2,1,0)

4,(2,2,0)

1,(0,0,1) 5,(2,2,2)

Causally Ordered Multicast Using

Vector Timestamps

• Maintained by

– Incrementing Vi[i] on every event

– Piggy-backing Vi on every message

• In order to maintain causal order, message r

from Process Pj delivered only if the following

conditions are met:

– vtj(r)[j] = Vk[j]+1 – r is the next message expected

from Pj

– vtj(r)[i]<=Vk[i] for all i≠j – Pk has seen all messages

seen by Pj

Time

• Physical clocks

– Synchronization challenges

• Logical clocks

– Lamport timestamps

– Vector timestamps

13 14

15 16

