
1

Implementing Shared Memory on

Distributed Systems

Sandhya Dwarkadas

University of Rochester

SDSM Progression

• TreadMarks – shared memory for networks of

workstations

• Cashmere-2L - 2-level shared memory system

• InterWeave - 3-level versioned shared state

Software Distributed Shared Memory
Why a Distributed Shared Memory (DSM)

System?

• Motivation: parallelism utilizing commodity hardware;

including relatively high-latency interconnect between nodes

• Comparable to pthreads library in functionality

• Implicit data communication (in contrast to an MPI-style

approach to parallelism)

• Presents same/similar environment as shared memory

multiprocessor machines

2

Applications (SDSM)

– CFD in Astrophysics [CS00]

– Genetic linkage analysis

[HH94,CBR95]

– Protein folding

– Laser fusion

– “Cone beam” tomography

– Correspondence problem [CAHPP97]

– Object recognition

– Volumetric reconstruction

– Intelligent environments

Detecting Shared Accesses

• Virtual memory – page-based coherence unit

• Instrumentation – overhead on every read and

write

Conventional SDSM System Using

Virtual Memory [Li 86] Problems

• Sequential consistency can cause large amounts of

communication

• Communications is $$$ on a workstation network

(Latency)

• Performance Problem: False Sharing

3

Goals

• Keep shared memory model

• Reduce communication using techniques such

as

– Lazy Release Consistency (to reduce

frequency of metadata exchange)

– Multiple Writer Protocols (to address false

sharing overheads)

TreadMarks [USENIX’94,Computer’96]

• State-of-the-art software distributed shared

memory system

• Page-based

• Lazy release consistency [Keleher et al. ’92]

– Using distributed vector timestamps

• Multiple writer protocol [Carter et al. ’91]

API

tmk_startup(int argc, char ∗ ∗ argv)

tmk_exit(int status)

tmk_malloc(unsigned size)

tmk_free(char ∗ ptr)

tmk_barrier(unsigned id)

tmk_lock acquire(unsigned id)

tmk_lock release(unsigned id)

Eager Release Consistency

• Changes to memory pages (“x”) propagated to all nodes

at time of lock release

• Inefficient use of network

• Can we improve this?

4

Lazy Release Consistency

• Synchronization of memory occurs upon successful
acquire of lock (“l”).

• More efficient; TreadMarks uses this.

• Changes to memory piggyback on lock acquire
notifications

Release Consistency: Eager vs.

Lazy

Lazy

Eager

Multiple Writer Protocols

• TreadMarks traps write access
to TM pages using VM system

• Copy of page -- a twin -- is
created

• Memory pages are synced by
generating a binary diff of the
twin and the current copy of a
page

• Remote node applies the diff to
its current copy of the page

Vector TimeStamps

5

Protocol Actions for TreadMarks

Uses vector timestamps to determine causally related modifications needed

TreadMarks Implementation

Overview
• Totally implemented in userspace

• Provides a TreadMarks heap [malloc() / free()] to programs; memory
allocated from said heap is shared

• Several synchronization primitives: barrier, locks

• Memory page accesses (reading or writing) can be trapped by using
mprotect()

– Accessing a page that has been protected causes a
SIGSEGV -- segmentation fault

– TreadMarks installs a signal handler for SIGSEGV that
differentiates faults on TreadMarks-owned pages.

• Messages from other nodes use SIGIO handler

• Writing to a page causes an invalidation notice rather than a data
update

TreadMarks Read Fault Example

• Remember: a read fault

means that the local copy

needs to be updated.

• Pages are initially not

loaded by diffs.

TreadMarks Write Fault

• The program on P1 attempts a
write to a protected page

• The MMU intercepts this
operation and throws a signal

• The TM signal handler
intercepts this signal and
determines whether it applies to
a TM page

• Flags page as modified,
unprotects it, and resumes
execution at the write (creating
a twin along the way)

6

Implementation
TreadMarks Synchronization

Events

• Let us suppose that P1 has
yielded a lock and P2 is
acquiring it.

• P1 has modified pages

• Lazy release consistency tells
us that an acquiring process
needs the changes from the
previous holder of the lock.

• P2 flags pages as invalid and
uses mprotect() to trap reads
and writes to said pages.

• P1 has diffs for its changes up
to this synchronization event.

More on Synchronization Events

• TM may actually defer diff creation and simply flag that it
needs to do a diff at some point. Many programs with
high locality benefit from this.

• Set of updated pages (write notices) is constructed by
using vector timestamps.

• Each process monitors its writes within each acquire-
release block or interval.

• The set of write notices sent to an acquiring process
consists of the union of all writes belonging to intervals at
the releasing node that have not been performed at the
acquiring node.

TreadMarks Summary

• Lazy release consistency minimizes the need to

push updates to other processors and allows

updates to piggyback on lock acquisitions

• Multiple writer protocols minimize false sharing

and reduce update size

• Requires no kernel or compiler support

• Not good for applications with a high frequency

of communication and synchronization

7

Cashmere-2L [SOSP’97,TOCS’05]

• Tightly-coupled cost-effective shared memory

computing

Motivation

• Take advantage of low-latency system-area

networks

• Leverage available hardware coherence in SMP

nodes

Core Cashmere Features

• Virtual memory-based coherence

– Page-size coherence blocks

• Data-race-free programming model

– “Moderately lazy” release consistency

protocol

– Multiple concurrent writers to a page

• Master copy of data at home node

• Distributed directory-based coherence

Protocol Actions for Cashmere-2L

8

Protocol Actions for Cashmere-2L

& TreadMarks

Cashmere TreadMarks

Hardware/Software Interaction

• Software coherence operations performed for

entire node

– Coalesce fetches of data to validate pages

– Coalesce updates of modified data to home

node

• Per-page timestamps within SMP to track

remote-SMP events

– Last write notice received

– Last home node update

– Last data fetch

Avoiding Redundant Fetches

P1:

P2:

Page
Fetch

Read

RelRead

• Logical Clock:

Last
• Page Fetch:
• Write Notice:

Write Notice

5 6

6

3

2 6

3

No Page
Fetch

86 7

3

6

7

Acq

Acq

Time

7

8

6

7

6

Incoming Diffs

Twin

?

Twin

Working Copy

Up-to-date

Up-to-date

Compare
up-to-date
data to the
twin.

Copy
differences to
the working
copy and the
twin.

9

Experimental platform

• Early work: 233 MHz

EV45s, 2 GB total

memory; 5us

remote latency; 30

MB/s per-link bandwidth;

60 MB/s total bandwidth

• Nov. 1998: 600 MHz

EV56s, 16 GB total

memory; 3us

remote latency; 70

MB/s per-link bandwidth;

>500 MB/s total

bandwidth

• 8-node cluster of 4-way

SMPs — 32 processors

total

Cashmere-2L Speedups

0

5

10

15

20

25

30

35

SOR LU Water TSP Gauss Ilink EM3D Barnes CFD

S
p

ee
d

u
p

 (
32

 p
ro

ce
ss

o
rs

)

Cashmere-2L vs. Cashmere-1L Comparison to TreadMarks

10

Shasta [ASPLOS’96,HPCA’98]

• 256-byte coherence granularity

• Inline checks to intercept shared accesses

– Intelligent scheduling and batching of checks

• Directory-based protocol

• Release consistent (can provide sequential

consistency)

• Can provide variable coherence granularity

Comparison to Shasta [HPCA’99]

0

2

4

6

8

10

12

14

B
a
rn

e
s

L
U

L
U

-D
e
f

O
c
e
a
n

R
a
y
tr

a
c
e

V
o
lr
e
n
d

W
a
te

rN
S

Q

W
a
te

rS
P

E
m

3
d

G
a
u
s
s

Il
in

k

S
O

R

T
S

P

S
p

e
e
d

u
p

s
 (

1
6
 P

ro
c
e
s
s
o

rs
)

Shasta CSM-2L Modified/Shasta Modified/CSM-2L

SPLASH-2 Page-based S-DSM

Summary: Cashmere-2L

• Low-latency networks make directories a viable

alternative for SDSM [ISCA’97]

• Remote-write capability mainly useful for fast

messaging and polling [HPCA’00]

• Two-level design exploits hardware coherence

within SMP [SOSP’97]

– Sharing within SMP uses hardware

coherence

– Operations due to sharing across SMPs

coalesced

InterWeave

[LCR’00,ICPP’02,ICDCS’03,PPoPP’03,

IPDPS’04]
• Shared state in a distributed and heterogeneous

environment

• Builds on recent work to create a 3-level system

of sharing using

– hardware coherence within nodes

– lazy release consistent software coherence

across tightly-coupled nodes

(Cashmere[ISCA’97,SOSP’97,HPCA’99,HPC

A’00])

– versioned coherence across loosely-coupled

nodes (InterAct[LCR’98,ICDM’01])

11

• Most applications cache state

– e-Commerce

– CSCW

– even web pages!

Problems:

• Major source of complexity (design &

maintenance)

• High overhead if naively written

Solution: Automate the caching!

– much faster than simple messaging

– much simpler than fancy messaging

Motivation

– multi-user games

– peer-to-peer

sharing

Target Applications (Wide-Area)
• Compute engines with remote satellites

– Remote visualization and steering

(Astrophysics)

• Client-server division of labor

– Data mining (interactive, iterative)

• Distributed coordination and sharing

– Intelligent environments

Goal:

• Ease of use

• Maximize utilization of available hardware

Distributed Environment Desired Model

12

Handheld Device
Java

Internet

Cluster
Fortran/C

data

InterWeave Server

IW libraryIW library

IW library

cache

Desktop
C/C++

cache

cache

 Heterogeneity

 Low bandwidth

InterWeave InterWeave API

• Data mapping and management as segments

– URL server =

"iw.cs.rochester.edu/simulation/SegA";

– IW_handle_t h = IW_open_segment(server);

• Synchronization using reader writer locks

– IW_wl_acquire(h), IW_rl_acquire(h)

• Data allocation

– p = (part*) IW_malloc(h, part_desc);

• Coherence requirement specification

– IW_use_coherence(h)

• Data access using ordinary reads and writes

InterWeave Design Highlights
• Heterogeneity

– Transparently handle optimized communication

across multiple machine types and operating

systems

• Leverage language reflection mechanisms and the use of an

IDL

• Two-way machine-independent wire format diffing

– Handle multiple languages

• Application-specific coherence information

– Relaxed coherence models and dynamic views

– Hash-based consistency

• A multi-level shared memory structure

– Leverage coherence and consistency management

provided by the underlying hardware and software

distributed memory systems

