
1

2/20/2022 CSC 2/456 93

Implementing Critical Sections Using

Busy Waiting
• In all our solutions today, a process enters a loop until the

entry is granted busy waiting.

• Problems with busy waiting:
– Waste of CPU time
– Potential for extra traffic/communication
– If a process is switched out of CPU during critical

section
• other processes may have to waste a whole CPU

quantum
• may even deadlock with strictly prioritized

scheduling (priority inversion problem)

Basic Hardware Mechanisms for

Synchronization
• Test-and-set – atomic exchange

• Fetch-and-op (e.g., increment) – returns value

and atomically performs op (e.g., increments it)

• Compare-and-swap – compares the contents of

two locations and swaps if identical

• Load-locked/store conditional – pair of

instructions – deduce atomicity if second

instruction returns correct value

• Transaction support (e.g., Intel’s TSX)

Simple Spinlock

type lock = (unlocked, locked)

procedure acquirelock (L : lock)

while (testandset (L) == locked) // returns

old value

procedure releaselock (L : lock)

lock = unlocked

Synchronization Using Special

Instruction: TSL (test-and-set)

entry_section:

TSL R1, LOCK | copy lock to R1 and set lock to 1

CMP R1, #0 | was lock zero?

JNE entry_section | if it wasn’t zero, lock was set, so loop

RET | return; critical section entered

exit_section:

MOV LOCK, #0 | store 0 into lock

RET | return; out of critical section

93 94

95 96

2

CAS – the ABA Problem Spinlocks using ll/sc

Lock:

ll reg1, location //load-locked

bnz reg1, Lock

sc location, reg2 //store conditional

beqz lock

ret

Unlock

st location, #0 // write 0

ret

Using ll/sc for Atomic Exchange

• Swap the contents of R4 with the memory

location specified by R1

try: mov R3, R4 ; mov exchange value

ll R2, 0(R1) ; load linked

sc R3, 0(R1) ; store conditional

beqz R3, try ; branch if store fails

mov R4, R2 ; put load value in R4

Spinlock Algorithms

• Test&test&set (w, w/o exponential backoff)

• Ticket lock (w, w/o proportional backoff)

• Array based queue locks

• MCS linked-list based queue locks

98 99

100 101

3

MCS Lock Acquire

mcs_lock_acquire:

st %g0, [%o1+4]

mov %o1, %g3

swap [%o0], %g3

cmp %g3, 0

be .LL4

mov 1, %g2

st %g2, [%o1]

st %o1, [%g3+4]

.LL9:

ld [%o1], %g2

cmp %g2, 0

bne .LL9

nop

.LL4:

retl

nop

MCS Lock Release
mcs_lock_release:

ld [%o1+4], %g2

cmp %g2, 0

bne .LL11

nop

cas [%o0], %o1, %g2

cmp %g2, %o1

be .LL10

nop

.LL17:

ld [%o1+4], %g2

cmp %g2, 0

be .LL17

nop

.LL11:

st %g0, [%g2]

.LL10:

retl

nop

Which Spinlock Should I Use? A Simple Barrier
mycount: local variable; counter, flag, lock: shared variables

p = number of processors

lock(&lock);

if counter == 0

flag = 0

mycount = ++counter

unlock(&lock);

if (mycount == p) {

counter = 0

flag = 1

}

else

while (flag == 0) {};

Will this work?

102 103

104 105

4

A Sense-Reversing Barrier
local_sense=0: local variable; counter, flag, lock: shared variables

p = number of processors;

local_sense = !(local_sense);

lock(&lock)

counter++

if (counter == p) {

unlock(&lock)

counter = 0

flag = local_sense

}

else {

unlock (&lock)

while (flag != local_sense) {};

}

Barrier Algorithms

• Centralized sense-reversing barrier

• Software combining tree

• Tournament barrier

• Dissemination barrier

• Combining (static) tree with improved

locality

Dissemination Barrier

┌ Log2 n ┐rounds

From Shared Memory Synchronization, ML Scott

Which Barrier to Use?

From Shared Memory Synchronization, ML Scott

106 107

108 109

5

Performance Goals

• Low latency, short critical path

• Low traffic

• Scalability

• Low storage cost

• Fairness

Non-blocking algorithms

Failure or suspension of any thread cannot cause failure or
suspension of another thread (no indefinite delay due to mutual
exclusion)
➢ Operations defined on it do not require mutual exclusion over multiple

instructions (use atomic primitives)

• Obstruction-free algorithm
– One that guarantees that a thread running in isolation will make

progress (although livelock is possible)

• Lock-free algorithm
– Operations guarantee that some process will complete its operation a

finite amount of time, even if other processes halt

• Wait-free algorithm
– Operations can guarantee that EVERY non-faulting process will

complete its operation in a finite amount of time

Coherence

A multiprocessor memory system is coherent if the results
of any execution of a program are such that, for each
location, it is possible to construct a hypothetical serial
order of all operations to the location that is consistent
with the result of the execution and
– it ensures that modifications made by a processor propagate to

all copies of the data

– program order is preserved for each process in this hypothetical
order

– writes to the same location by different processors are serialized
and the value returned by each read is the value written by the
last write in the hypothetical order

Snoop-Based Coherence

• Makes use of a shared broadcast medium to
serialize events (all transactions visible to all
controllers and in the same order)
– Write update-based protocol

– Write invalidate-based (e.g., basic MSI, MESI
protocols)

• Cache controller uses a finite state machine
(FSM) with a handful of stable states to track the
status of each cache line

• Consists of a distributed algorithm represented
by a collection of cooperating FSMs

110 111

112 113

6

A Simple Invalidate-Based Protocol

- State Transition Diagram
Correctness Requirements

• Need to avoid

– Deadlock – caused by a cycle of resource

dependencies

– Livelock – activity without forward progress

– Starvation – extreme form of unfairness

where one or more processes do not make

forward progress while others do

Design Challenges

• Cache controller and tag design

• Non-atomic state transitions

• Serialization

• Cache hierarchies

• Split-transaction buses

114 115

116

