
Architecture and design of AlphaServer GS320

Kourosh Gharachorloo, Madhu Sharma, Simon C Steely, Stephen Van Doren

 ASPLOS IX: Proceedings of the ninth international conference on Architectural support for programming 
languages and operating systems; November 2000 Pages 13–24

Presented in class by:
Ben Reber and Abhishek Tyagi

1

https://dl.acm.org/doi/10.1145/378993.378997


Key Contributions

- Presents AlphaServer GS320, a cache-coherent NUMA multiprocessor developed at Compaq 
targeting medium-scale computing

- Rely on ordering properties of network to simplify coherence protocol
- Propose solutions to decrease network occupancy 
- Design naturally lends itself to elegant solutions for deadlock, livelock, starvation, and fairness.
- Efficient memory ordering techniques

2



Review: Snooping vs Directory Protocols

- Snooping based protocols requires a common bus for broadcasting 
messages and requests

- Works well with small scale machines but does not scale well for larger 
systems

- Directory based protocols keeps track of what is being shared in one 
centralized place

- Sends point-to-point requests to processors
- Scales better than snoop

3



Review: Directory Based Cache Coherence

- Each block has an entry centralized “directory” that maintains the state of the 
block in different caches

- Directory is colocated with the memory and stores information about all 
memory lines

- A presence vector stores a bit for every processor, for every memory block – 
the overhead is a function of the number of memory blocks and processors

4



Ownership State

Add ownership state to MESI stable states

Similar to the modified state, but allows sharing

This is called “Dirty Sharing”

Figure from Nagarajan et al. “A Primer on Memory 
Consistency and Cache Coherence, 2nd Edition”, pp 99.

5



Terminology

- Home node: the node that stores memory and directory state for the block in 
question

- Dirty node: the node that has a cache copy in modified state
- Owner node: the node responsible for supplying data (usually either the home 

or dirty node)

6



AlphaServer GS320 Architecture

-32 Alpha 21264 processors

-256 GB memory 

-Hierarchical structure consisting of up to 8 nodes called QBBs

-QBB - Quad-processor building block

7



Architecture Overview: Block Diagram

Figure by UR alum and former CS458 student Alok Garg
8



Quad-Processor Building Block (QBB)

- DTAG- Stores all cache tags of second 
level caches. Maintains coherence at 
QBB level

- DIR- Directory that maintains coherence 
across QBBs

- TTT- is a 48 entry associative storage to 
track data in pending transactions at a 
node.

Figure by UR alum and former CS458 student Alok Garg
9



Directory entry in AlphaServer GS320

Figure by UR alum and former CS458 student Alok Garg
10



Crossbar Switch

Figure by UR alum and former CS458 student Alok Garg

11



Benefits of the Hierarchical approach

Scalable Interconnects:

-Fully connected crossbar switch grows quadratically

-Only need to fully connect at QBB granularity

-Local switch within each QBB

Scalable Directory Metadata:

-Tracking sharers at coarse granularity saves bits

-14 bits / memory line (6 for owner, 8 for QBB sharers)

-Tracking sharers at processor granularity would require 47 bits, ~10% space overhead

Distributes contention among multiple directory modules

12



Proposed Coherence Protocol

- Designed with two goals in mind:
- Reduce inefficiencies caused by slowing down common transactions with solutions to rare 

edge cases
- Use ordering properties of the interconnect to reduce number of protocol messages 

- Invalidation based protocol supporting read, read-exclusive, exclusive (requesting processor has a 
shared copy) and exclusive without data (intent to write the entire cache line, thus avoiding a fetch 
of the line's current contents)

- Supports dirty sharing without requiring negative acknowledgement messages (NAKs)
- Transactions require at most one visit to the home node, so directory state can be updated 

immediately upon message arrival
- DTAG serves as a centralized full-map directory and keeps track of sharing information for the four 

processors
- All remote accesses are sent to the home node

13



Removing Negative Acks (NAKs)

- NAKs are primarily used in scalable coherence protocols to 
- Resolve resource dependencies that may result in deadlocks
- Resolve races where request fails to find data at the node or processor it is forwarded to

- Removing NAKs/retries and blocking has desirable characteristics
- All directory state changes can occur immediately when home node is first visited as we 

guarantee that an owner node (or processor) can service the request for sure. 
- Results in fewer transaction messages for 3-hop read and write requests

- Directory controller is a simple state machine which can be updated immediately avoiding 
blockages and extra occupancy

- The early commit optimization, depends on the guarantee that an owner can always service a 
request

- Avoid the livelock, starvation and fairness issues

14



Problem: Protocol Deadlock

P2P1

15



Solution: Virtual Lanes

-Uses three virtual lanes to eliminate the possibility of protocol deadlocks

- Q0: carries request from a processor to home (point-to-point ordering)
- Q1: carries messages from the home directory (requires total ordering)
- Q2: carries replies from third party node to the requester (no ordering required)

16



Solution: Virtual Lanes

P2P1

17



Problem: Request Races

- Late request race: request arrives at the owner after it has written the block 
back to memory

- Early request race: request arrives at the owner before it has received it’s 
copy of data

18



Solution: Late Request Race

-Each cache is required to maintain a copy of evicted cache lines until the directory acknowledges the 
change

-Total ordering on Q1 guarantees that a data request will not bypass this acknowledgement

Done in two steps:

- When a processor in QBB victimizes a line, it awaits a release signal before discarding 
data. 

- This signal is delayed until all forwarded request in DTAG are satisfied
- Writeback is taken care by TTT and maintains a copy until home acknowledges 

writeback

19



Solution: Early Request Race

-Cache has already been declared the owner, but has not yet received data

-Delay forwarded request (on Q1) until the data (on Q2) has arrived in cache

-Compare inbound request against addresses in the processor’s miss-address file

-Block queue locally on match

20



Example transaction 
flows

21



Consistency Review

-Recall that the strongest consistency model is sequential consistency, in which:

-All processors execute operations in some sequential order (i.e. program 
order)

-All operations are visible in this order to all other processors.

-This model disallows many valuable compiler optimizations

-Relaxing these requirements can result in performance benefits

22



Alpha Consistency Model

-Allow total read/write reordering

-Allow reading your own write “early”, i.e. before it is visible to all processors

-Memory dependences are enforced using memory barrier operations

23



Consistency Model Optimizations

-Separate replies into commit (used for ordering purposes) and data/reply

-Commit is placed on Q1 (totally ordered lane)

-Time sensitive data/reply may bypass other traffic by using another lane (Q2)

-Maintain count of total number of pending requests

-On memory barrier, wait until this count reaches zero. 

24



Early Commit Optimization

-Early commit generated for any read or read exclusive request that is forwarded.

-Processor is allowed past a memory barrier if all outstanding requests have 
received their commit message, regardless of whether they have received data.

-Messages must be carefully ordered for correctness.

25



Results

26


