
Consistency models from a
programmer's perspective

Presented by Alex Mononen and Jack Yu

Threads Cannot be Implemented
as a Library

Hans-J. Boehm. 2005. Threads cannot be implemented as a library. SIGPLAN Not. 40, 6 (June 2005), 261–268.
DOI:https://doi.org/10.1145/1064978.1065042

Pthread Concurrency Implementation

Pthread Concurrency Implementation

● Hardware may reorder memory operations

● Compilers may reorder memory operations

What causes concurrency issues?

"Applications shall ensure that access to any memory location by
more than one thread of control (threads or processes) is restricted
such that no thread of control can read or modify a memory location
while another thread of control may be modifying it. Such access is
restricted using functions that synchronize thread execution and also
synchronize memory with respect to other threads"

Source: "Memory Synchronization" in IEEE Std 1003.1-2001 (Revision of IEEE Std 1003.1-1996 and IEEE Std 1003.2-1992) , pp.
100, 6 Dec. 2001, doi: 10.1109/IEEESTD.2001.93364.

Pthread Concurrency Implementation

● Ambiguous - what happens when rules are violated? How big should a memory

location be?

● Informal - doesn’t say exactly what order memory operations take place

● Makes ensuring concurrency the responsibility of the application developer

instead of language designer - more work for the application developer

Problems with this specification

Pthread Concurrency Implementation
Supported Synchronization Functions

● pthread_mutex_trylock()
● pthread_mutex_unlock()
● pthread_spin_lock()
● pthread_spin_trylock()
● pthread_spin_unlock()
● pthread_rwlock_rdlock()
● pthread_rwlock_timedrdlock()
● pthread_rwlock_timedwrlock()
● pthread_rwlock_tryrdlock()
● pthread_rwlock_trywrlock()

● pthread_rwlock_wrlock()
● pthread_rwlock_unlock()
● sem_post()
● sem_timedwait()
● sem_trywait()
● sem_wait()
● semctl()
● semop()
● wait()
● waitpid()

● fork()
● pthread_barrier_wait()
● pthread_cond_broadcast()
● pthread_cond_signal()
● pthread_cond_timedwait()
● pthread_cond_wait()
● pthread_create()
● pthread_join()
● pthread_mutex_lock()
● pthread_mutex_timedlock()

Pthread Concurrency Implementation

● Memory barrier instructions in synchronization functions prevent reordering of

memory operations out of the critical section

● Pthread functions are treated as opaque functions where anything is possible (i.e.

read/write global value), so that memory operations cannot be moved around the

call

The Pthreads solution to concurrency issues

Pthread Concurrency Implementation

● Memory barrier instructions in synchronization functions prevent reordering of

memory operations out of the critical section

● Pthread functions are treated as opaque functions where anything is possible (i.e.

read/write global value), so that memory operations cannot be moved around the

call

The Pthreads solution to concurrency issues

main.c:

#include “lib.h”

...

void f() {

 x = 0;

 b();

 printf(“%d\n”, x);

}

...

lib.h:

int x;

...

void b();

...

lib.c (hidden):

#include “lib.h”

...

void b() {

 x++;

}

...

Opaque function example

main.c:

#include “lib.h”

...

void f() {

 x = 0;

 b();

 printf(“%d\n”, x);

}

...

lib.h:

int x;

...

void b();

...

lib.c (hidden):

#include “lib.h”

...

void b() {

 x++;

}

...

Opaque function example

main.c:

#include “lib.h”

...

void f() {

 x = 0;

 b();

 printf(“%d\n”, x);

}

...

lib.h:

int x;

...

void b();

...

lib.c (hidden):

#include “lib.h”

...

void b() {

 x++;

}

...

Opaque function example

Pthread Concurrency Implementation

● The C/C++ compiler does not see threads!

● “Just another runtime library”

Why are these “workarounds” needed?

Pthread Concurrency Implementation

● Compiler may introduce race conditions that the programmer does not expect

○ When is a race expected to occur? When does it ACTUALLY occur?

○ No formal specification

● Compiler cannot optimize program in accordance to best practice due to lack of

information

○ Either accept poor performance, or intentionally/unintentionally break the rules

■ Programs are now more likely to have memory errors.

Problems

Correctness Issues

Correctness Issues
● Concurrent Modification (Speculation leading to invalid states)

● Rewriting of Adjacent Data (Bit-fields overwriting data in the same word)

● Register Promotion (Optimizing variables out of critical section)

Correctness Issues

Optimization: Speculation

● Branch instructions can be expensive if it is the common case

● May be faster to speculate then “undo” the assignment for the rare cases

Concurrent Modification

Correctness Issues

Original:

int x = y = 0;
T1:

if (x == 1) ++y;
T2:

if (y == 1) ++x;

Concurrent Modification

“Optimized”:

int x = y = 0;
T1:

++y; if (x != 1) --y;
T2:

++x; if (y != 1) --x;

Correctness Issues

Original:

int x = y = 0;
T1:

if (x == 1) ++y;
T2:

if (y == 1) ++x;

Possible states of (x, y): (0, 0)

Concurrent Modification

“Optimized”:

int x = y = 0;
T1:

++y; if (x != 1) --y;
T2:

++x; if (y != 1) --x;

Possible states of (x, y):

Correctness Issues

Original:

int x = y = 0;
T1:

if (x == 1) ++y;
T2:

if (y == 1) ++x;

Possible states of (x, y): (0, 0)

Concurrent Modification

“Optimized”:

int x = y = 0;
T1:

++y; if (x != 1) --y;
T2:

++x; if (y != 1) --x;

Possible states of (x, y):

Correctness Issues

Original:

int x = y = 0;
T1:

if (x == 1) ++y;
T2:

if (y == 1) ++x;

Possible states of (x, y): (0, 0)

Concurrent Modification

“Optimized”:

int x = y = 0;
T1:

++y; if (x != 1) --y;
T2:

++x; if (y != 1) --x;

Possible states of (x, y):

Correctness Issues

Original:

int x = y = 0;
T1:

if (x == 1) ++y;
T2:

if (y == 1) ++x;

Possible states of (x, y): (0, 0)

Concurrent Modification

“Optimized”:

int x = y = 0;
T1:

++y; if (x != 1) --y;
T2:

++x; if (y != 1) --x;

Possible states of (x, y): (0, 0)

Correctness Issues

Original:

int x = y = 0;
T1:

if (x == 1) ++y;
T2:

if (y == 1) ++x;

Possible states of (x, y): (0, 0)

Concurrent Modification

“Optimized”:

int x = y = 0;
T1:

++y; if (x != 1) --y;
T2:

++x; if (y != 1) --x;

Possible states of (x, y): (0, 0)

Correctness Issues

Original:

int x = y = 0;
T1:

if (x == 1) ++y;
T2:

if (y == 1) ++x;

Possible states of (x, y): (0, 0)

Concurrent Modification

“Optimized”:

int x = y = 0;
T1:

++y; if (x != 1) --y;
T2:

++x; if (y != 1) --x;

Possible states of (x, y): (0, 0)

Correctness Issues

Original:

int x = y = 0;
T1:

if (x == 1) ++y;
T2:

if (y == 1) ++x;

Possible states of (x, y): (0, 0)

Concurrent Modification

“Optimized”:

int x = y = 0;
T1:

++y; if (x != 1) --y;
T2:

++x; if (y != 1) --x;

Possible states of (x, y): (0, 0), (1, 1)

Correctness Issues

Optimization: speculation

● Branch instructions can be expensive if it is the common case

● May be faster to speculate then “undo” the assignment for the rare cases

Issue:

● Optimization results in new possible state in program

● Author mentions no known real-life bugs caused by this, but still violation of

pthreads specification

Concurrent Modification

Correctness Issues

Optimization: consolidating bit-fields

● Compiler combines variables into a single word for space efficiency

● Memory location of variables not transparent to application programmer

Rewriting of Adjacent Data

Correctness Issues

struct x {
 char a,b,c,d;
};

Rewriting of Adjacent Data

What does the struct look like in memory?

d c b a

Correctness Issues

struct x {
 char a,b,c,d;
};

Rewriting of Adjacent Data

T1:
x.b = ‘b’;
x.c = ‘c’;
x.d = ‘d’;

T2:
x.a = ‘a’;

Correctness Issues

struct x {
 char a,b,c,d;
};

Rewriting of Adjacent Data

T1:
x = “dcb\0” | x.a;

T2:
x.a = ‘a’;

Correctness Issues

struct x {
 char a,b,c,d;
};

x.a: ‘\0’
x.b: ‘\0’
x.c: ‘\0’
x.d: ‘\0’

Rewriting of Adjacent Data

T1:
x = “dcb\0” | x.a;

T2:
x.a = ‘a’;

Correctness Issues

struct x {
 char a,b,c,d;
};

x.a: ‘a’
x.b: ‘\0’
x.c: ‘\0’
x.d: ‘\0’

Rewriting of Adjacent Data

T1:
x = “dcb\0” | x.a;

T2:
x.a = ‘a’;

Correctness Issues

struct x {
 char a,b,c,d;
};

x.a: ‘a’
x.b: ‘\0’
x.c: ‘\0’
x.d: ‘\0’

Rewriting of Adjacent Data

T1:
x = “dcb\0” | x.a;

T2:
x.a = ‘a’;

Correctness Issues

struct x {
 char a,b,c,d;
};

x.a: ‘a’
x.b: ‘\0’
x.c: ‘\0’
x.d: ‘\0’

Rewriting of Adjacent Data

T1:
x = “dcb\0” | ‘\0’;

T2:
x.a = ‘a’;

Correctness Issues

struct x {
 char a,b,c,d;
};

x.a: ‘\0’
x.b: ‘b’
x.c: ‘c’
x.d: ‘d’

Rewriting of Adjacent Data

T1:
x = “dcb\0” | x.a;

T2:
x.a = ‘a’;

Correctness Issues

Optimization: consolidating bit-fields

● Compiler combines variables into a single word for space efficiency

● Memory location of variables not transparent to application programmer

Issue:

● Threads modifying different variables update same memory location

● Modifications are not atomic, race condition occurs

Rewriting of Adjacent Data

Optimization: register promotion of variables

● Variable stored in register instead of memory to improve performance

● Store to/read from memory around opaque functions for correct behavior

Correctness Issues
Register Promotion

Correctness Issues

● x is a global variable

● b(), c() are normal functions

Register Promotion

int x;

void f() {

 b();

 x++;

 c();

}

Correctness Issues

● x is a global variable

● b(), c() are normal functions

Register Promotion

int x;

void f() {

 b();

 x++;

 c();

}

Correctness Issues

● x is a global variable

● y is a register variable

● b(), c() are normal functions

Register Promotion

int x;

register int y

void f() {

 b();

 y++;

 c();

}

Correctness Issues

● x is a global variable

● y is a register variable

● b(), c() are opaque functions

Register Promotion

int x;

register int y

void f() {

 b(); //opaque

 y++;

 c(); //opaque

}

Correctness Issues

● x is a global variable

● y is a register variable

● b(), c() are opaque functions

Register Promotion

int x;

register int y

void f() {

 b(); //opaque

 y++;

 c(); //opaque

}

Correctness Issues

● x is a global variable

● y is a register variable

● b(), c() are opaque functions

Register Promotion

int x;

register int y

void f() {

 x = y;

 b(); //opaque

 y = x;

 y++;

 x = y;

 c(); //opaque

 y = x;

}

Correctness Issues

● x is a global variable

● y is a register variable

● orange section is a critical section

Register Promotion

int x;

register int y

void f() {

 x = y;

 pthread_mutex_lock(&mtx);

 y = x;

 y++;

 x = y;

 pthread_mutex_unlock(&mtx);

 y = x;

}

Correctness Issues

● x is a global variable

● y is a register variable

● orange section is a critical section

● modify x outside of critical section!

Register Promotion

int x;

register int y

void f() {

 x = y;

 pthread_mutex_lock(&mtx);

 y = x;

 y++;

 x = y;

 pthread_mutex_unlock(&mtx);

 y = x;

}

Optimization: register promotion of variables

● Variable stored in register instead of memory to improve performance

● Store to/read from memory around opaque functions for correct behavior

Issue:

● Variable is originally shared across multiple threads protected by a lock

● Memory location of shared variable now modified outside of critical section

Correctness Issues
Register Promotion

Performance Issues

Performance Issues
● Only parallel programming style sanctioned by pthreads: pthread synchronization

primitives

○ No volatile, no atomic C++ data types

○ pthread_mutex_lock()/pthread_mutex_unlock() implemented using atomic

instructions and memory barriers

○ Better performance using atomic instructions directly (C++ atomic types)

○ Prevents hardware instruction reordering, in some cases, in both directions when only one direction

matters

● What if data races and specification violation do not affect program output?

Example: Sieve of
Eratosthenes

for (my_prime = start;

 my_prime < 10000; ++my_prime)

 if (!get(my_prime)) {

 for (multiple = my_prime;

 multiple < 100000000;

 multiple += my_prime)

 if (!get(multiple)) set(multiple);

 }

Performance Issue: Sieve of Eratosthenes

→ 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Performance Issue: Sieve of Eratosthenes

→ 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Performance Issue: Sieve of Eratosthenes

→ 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Performance Issue: Sieve of Eratosthenes

→ 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Performance Issue: Sieve of Eratosthenes

→ 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Performance Issue: Sieve of Eratosthenes

→ 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Performance Issue: Sieve of Eratosthenes

→ 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Performance Issue: Sieve of Eratosthenes

→ 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

● Multiple threads mark and sweep what is not a prime

● Check unmarked numbers for primes

● What if a mark doesn’t show up on a different thread?

○ Redo the work, produce the same results

● Safe to have data races!

○ Doesn’t change output

Performance Issues
Multiple Sieve of Eratosthenes on same array

● Mutex

● Spinlock

● Atomics - Provided by C++, not pthreads

● None - Should produce correct results

Only Mutex and Spinlock methods are sanctioned by pthreads!

Performance Issues
Multithreaded Sieve of Eratosthenes Synchronization

Performance Issues
Multithreaded Sieve of Eratosthenes Performance

● Unsanctioned methods are significantly faster!

● Better to break the rules to achieve better performance?

Performance Issues
Multithreaded Sieve of Eratosthenes Performance

Conclusion of the Paper

Conclusion of the Paper
● Compiler optimizations can lead to correctness issues due to not understanding

difference between a regular runtime library and a threading library

● Compiler cannot perform certain optimizations due to threading library

information hiding

● Threads need to visible to the compiler

C++11 Memory Model
A. Alexandrescu, H.-J. Boehm, K. Henney, D. Lea, and B. Pugh. Memory model for multithreaded C++.

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2004/n1680.pdf.

Memory Models

Memory Models

● A ‘contract’ between the programmer and the system

● Requires the programmer to obey certain rules

What is a memory model?

Memory Models

● Either used direct calls to OS-provided threading library (pthreads) or used an

intervening layer (boost threads)

● Multithreading was very vague and unstandardized

● Lack of standardization led to everybody doing things differently

What was it like previously?

Memory Models

● Nothing was truly abstract

● Multithreading wasn’t officially supported by C++

Well what’s wrong with that?

Memory Models

Global

int x, y;

Thread 1 Thread 2

x = 17; cout << y << " ";

y = 37; cout << x << endl;

Well what’s wrong with that?

Memory Models

● Specification of an abstract memory model describing the interactions between

threads and memory

● Introduction of a small number of standard library classes providing standardized

access to atomic update operations

● Definition of a standard thread library that provides similar functionality to

pthreads and Win32 threads, but meshes with the rest of the C++ standard

How was this fixed?

https://www.modernescpp.com
/images/blog/Speichermodell/S
peichermodell/Overview.png

Memory Models
Fixes actualized?

Global

int x, y;

Thread 1 Thread 2

x = 17; cout << y << " ";

y = 37; cout << x << endl;

Global

atomic<int> x, y;

Thread 1 Thread 2

x.store(17); cout << y.load() << " ";

y.store(37); cout << x.load() << endl;

Memory Models

● Atomic Operations

● Visible Effects of Operations

● Memory Order

What’s in the contract?

Atomic Operations

namespace std {
class atomic_int {
public:

int get();
int set(int v);
bool compare_and_set(int expected_value, int new_value);

int weak_get();
int weak_set(int v);
bool weak_compare_and_set(int expected_value, int new_value);

// other minor convenience functions, including:
int get_and_increment();
int get_and_add(int v);
// ...

};
}

What are they?

Visible Effects of Operations

● Atomicity

● Volatile data

● Opaque calls

What are they?

● Sequentially consistent

● Relaxed

● Acquire/release

● Release/consume

Memory Order
What is it?

Memory Models
Sequential Consistency

Global

atomic<int> x, y;

Thread 1 Thread 2

x.store(17); cout << y.load() << " ";

y.store(37); cout << x.load() << endl;

Memory Order
Relaxed Ordering & Speedups

Global

atomic<int> x, y;

Thread 1 Thread 2

x.store(17, memory_order_relaxed); cout << y.load(memory_order_relaxed) << " ";

y.store(37, memory_order_relaxed); cout << x.load(memory_order_relaxed) <<
endl;

Memory Models
Acquire/Release Ordering

Global

atomic<int> x, y;

Thread 1 Thread 2

x.store(17, memory_order_release); cout << y.load(memory_order_acquire) << " ";

y.store(37, memory_order_release); cout << x.load(memory_order_acquire) <<
endl;

Memory Models
Release/Consume Ordering

Global

atomic<int> x, y;

Thread 1 Thread 2

x.store(17, memory_order_release); cout << y.load(memory_order_consume) << " ";

y.store(37, memory_order_release); cout << x.load(memory_order_consume) <<
endl;

What does this mean for us?

● You don’t really need to manage threads unless seeking additional performance

or control

● The weaker the contract, the faster the program

Why should I care?

Problems that C++ didn’t have to think about

● Java enforces sequential consistency

● x86 isn’t natively sequentially consistent

● Barriers and fences

Java is good?

Any Questions?

