
3/30/2022

1

Implementing shared memory 

on distributed systems
Shreyan Goswami

Introduction

The promise of cloud

● Combine relatively cheap hardware to match performance of large computing 

clusters

● Organizations already have installed workstations, so reuse them

● Various systems such as distributed shared memory and message passing 

have been proposed

Distributed shared memory(DSM)

Source: https://www.cs.rochester.edu/u/sandhya/papers/computer96.pdf

● TreadMarks is a DSM, allowing processes/processors on different machines to 

share memory 

1 2

3 4



3/30/2022

2

Problems

Existing implementations

● Many run on in-house research platforms

● Requires kernel modifications

● Performance issues because they mimicked consistency protocols used by 

hardware shared memory multiprocessors.

● False sharing

● Example: IVY

Messaging is expensive

● Communication across a network is expensive

● Involves interrupts, context switches and execution of several layers of 

network software

● For a performant DSM, consider minimizing the number of messages and 

volume of data sent across the network

False sharing

● Invalidates entire cache line in a 

multiprocessor system

● In DSM, entire page get invalidated

● False sharing is more undesirable in 

DSM systems.

● Why?

Source: 

https://haryachyy.wordpress.com/2018/06/19/lear

ning-dpdk-avoid-false-sharing/

5 6

7 8



3/30/2022

3

Solutions

Reducing the number of messages

Source - class slides

● Traditional DSM would invalidate pages

● Ivy sends a message for each update and invalidate

● Further optimizations possible

● This is called eager release consistency

Reducing the number of messages

Source - class slides

● Observation: Only one processor can execute in the critical section

● Send the communication when the next processor requests for a lock.

● Changes to the shared data can be communicated during such a 

synchronization event

● This is called lazy release consistency

Reduce false sharing

● Traditional coherence protocols require exclusive access to data before write 

can happen

● Want to avoid invalidating every other processor’s data

● Enable multiple writers to change a single page without invalidations.

● Communicate changes to a page during a synchronization event.

● Enabled through write notices and diff generation

9 10

11 12



3/30/2022

4

Write notices

● During synchronization wait for the information that a page has changed to be 

transmitted

● Issue the information that a change has happened during a synchronization 

but not the actual change - write notice

● Processor on receiving a write notice can behave in different ways.

● TreadMarks uses invalidation protocol

● The processor invalidates the page for which it has received a write notice

● When requesting for the page again, a page fault is triggered and the 

processor requests the diff from the processor who issued the write notice 

earlier.

Diff generation

● Before a processor writes to a 

shared page, it always creates a 

twin of the page

● Create a run length encoding of the 

changes by comparing with the twin

● No need to send the entire page for 

communicating change reducing the 

size of message

● Twin is discarded after diff creation

Source - class slides

Diff generation

● Diffs are not generated at the point of synchronization

● Processor can continue making changes until a diff is requested

● Leads to a lazy diff generation and improved performance

Data structures

13 14

15 16



3/30/2022

5

PageArray

● Main data structure

● Contains the state of the shared page: no access, read-only or read/write

● An approximate copyset specifying which processors currently cache the 

page

● Most important: an array indexed by the processor, each index pointing to 

head/tail of a doubly linked list of write notices sorted in descending order of 

interval

● If the diff is generated for the write notice, the node points to the diff in the diff 

pool

Other supporting data structures

● ProcArray: an array which has one entry for each processor to the head and 

the tail of a doubly linked list of interval records.

● Interval records 

● Set of write notices

● Diff pool

Kernel and compiler level changes

● No changes at the OS level

● No changes required at the compiler level

Implementation

17 18

19 20



3/30/2022

6

Locks

● Locks have statically assigned managers assigned in a round robin manner

● Acquirer sends their current vector timestamp to the manager

● Manager forwards the request to the previous lock holder

● When lock is released, the releaser informs the acquirer of all intervals 

between the vector timestamp in the acquirer’s lock request message and the 

releaser’s current vector timestamp.

Barriers (client perspective)

● Barriers have a centralized manager

● At barrier arrival, each client informs the manager of the manager’s last vector 

timestamp that the client is aware of.

● The client informs the manager of all it’s intervals between the last vector 

timestamp of the manager that the client is aware of and the client’s current 

vector timestamp

Barriers(manager perspective)

● When manager arrives at the barrier it adds these intervals into its data 

structures

● After all messages are received, the manager informs all clients of all the 

intervals between their vector timestamp and the manager’s current vector 

timestamp.

Lazy release consistency

● Release consistency requires a processor p, can continue past its acquire if 

all updates that happened at intervals less than p’s vector timestamp is visible 

to p

● At an acquire, p will send its timestamp to the previous acquirer q

● Processor q compares it’s timestamp with that of p’s

● Issues write notices to all intervals in q’s current vector timestamp but not in 

p’s vector timestamp

● Processor p invalidates all pages for which write notices have been issued

21 22

23 26



3/30/2022

7

Diff/Interval creation

● Lazy RC allows diffs to be created when requested

● Normally, vector timestamp is updated every time an event occurs in the 

system

● Delay this to the point when there is a need to communicate with another 

processor

● At this point generate write notices for all pages that was modified since the 

last sync operation

● Allows the current processor to keep making changes without invalidations

Final questions, thoughts and comments

27 28


