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Overview

▪ Background
▪ Programming Model
▪ CUDA Architecture
▪ Flow Control
▪ Memory Hierarchy
▪ Recent Developments
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Background

▪ First GPU: GeForce 256 (1999) 
▪ 5M transistors

▪ First programmable GPU: GeForce 3 (2001)
▪ 60M transistors
▪ Languages: DX8 and OpenGL
▪ Execute vertex shader and pixel shader programs

▪ Common architecture:
▪ NVIDIA:  Fermi(2010), Kepler(2012), Maxwell(2014), Pascal(2016), 

Volta(2017), Turing(2018), Ampere(2020), Hopper(March, 2022)1

▪ AMD: TeraScale, GCN, RDNA, etc. 
▪ Fastest datacenter GPU (till 10/2020):

▪ A40 GPU accelerator: (FP32) 37.4 TFLOPS
▪ 10,752 CUDA cores (28.3 billion transistors) & 48 GB GDDR6 memory
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1. Everything You Need to Know About GPU Architecture and How It Has Evolved https://www.cherryservers.com/blog/everything-you-need-to-know-about-gpu-architecture



GPU - A Computing Accelerator

▪ Separate piece of Device
▪ Specialized hardware
▪ Connected to CPU through PCIe Bus
▪ Have its own memory (usually)
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Programming Model
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Programming on GPUs

A typical CUDA program:
1. Copy memory from CPU to GPU
2. Launch a predefined kernel

a. Each thread will execute this 
kernel code

b. Thread have its identifier 
(similar to thread id)

3. Copy result from GPU back to CPU
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Programming on GPUs - Example

Kernel Definition (saxpy: Single-precision A * X Plus Y)
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Programming on GPUs - Example (cont)

Memory (and Data) Initialization
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Programming on GPUs - Example (cont)
Memory Copying and Kernel Execution

Cleanup
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Programming on GPUs (cont)

Thread Organization
▪ Thread Block 

▪ Collection of warps 
(multiple threads)

▪ All threads in same block 
have shared memory

▪ Grid 
▪ Collection of thread blocks
▪ All thread blocks in same 

grid have shared memory
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Programming on GPUs (cont)

 =⌈N/blocksize⌉
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GPU Architecture
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Example based on Nvidia Fermi Architecture and GF100



GPU - Architecture Overview

▪ Collection of Streaming Multiprocessor
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Streaming Multiprocessor

▪ Consists of massive cores and independent 
load/store units

▪ Contains special function units
▪ Execute transcendental instructions 

such as sin, sqrt, Tensor Operations.
▪ Shared L1 cache
▪ Lots of registers
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▪ Acronym
▪ LD/ST: Load Store Units
▪ SFU: Special Function Units



Streaming Processor (or CUDA core)

▪ Underlying computing hardware
▪ Takes instruction from warp scheduler and 

dispatch unit
▪ Executes through the ALU units(FP and INT in 

this case)
▪ Comparing to a CPU core

▪ Almost no control logic
▪ Much cheaper to build
▪ More like an ALU(but they call it a core)

▪ Can have specialized hardware for specific 
computations(not necessarily in CUDA core)
▪ Single/Double Precision Floating Point Unit
▪ Ray Tracing Core, Tensor Core
▪ SFUs

Fermi Architecture [3]
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GPU Hardware vs CUDA Model
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Streaming Multiprocessor - Warp
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▪ Each SM(thread blocks) have multiple 
warps

▪ Example: Kepler GK110
▪ 32 threads/core each warp

▪ Each warp is under Single Instruction 
Multiple Thread(SIMT) model
▪ Warp scheduler give same 

instruction to each core

[8]

▪ Acronym
▪ DP Units: Double Precision Units
▪ LD/ST: Load Store Units
▪ SFU: Special Function Units
▪ Tex: Texture Memory



Streaming Multiprocessor - Warp[contd]
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▪ Hardware Warp Scheduler
▪ Dispatch specific instructions 

by each Instruction Dispatch 
Unit

▪ All threads in one warp executes the 
same instruction

[8]



Graphic Processing Cluster(GPC)

19

▪ Cluster for specific graphic operations
▪ Basically a collection of (<4) SMs 

with other aiding hardware
▪ Not physically organized(flexible)

▪ Raster Engine
▪ Triangle setup, rasterization, and Z-cull 

//Some Graphic Operation
▪ Polymorph Engine

▪ Vertex attribute fetch and tessellation 
//Some Graphic Operation

GF 100 Graphics Processing Cluster (GPC)[8]



GPU Flow Control 
- Divergent Branching
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Control Flow Problem In SIMT
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1    do {
2        t1 = tid*N;          
3        t2 = t1 + i;
4        t3 = data1[t2];
5        t4 = 0;
6        if( t3 != t4 ) {
7            t5 = data2[t2]; 
8            if( t5 != t4 ) {
9                x += 1; 
10           } else {
11               y += 2; 
12           }
13       } else {
14           z += 3; 
15       }
16       i++; 
17   } while( i < N ); 

A

C

B

F

D

G

▪ Consider this piece of CUDA kernel Code
▪ A, B, C, D, E, F, G are all instruction 

address(think of them in assembly)
▪ Different control path can be taken by 

different thread (depend on their tid)
▪ What is the problem?

E
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Divergent Branching - Simpler Example

[1]



Control Flow Problem In SIMT
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1    do {
2        t1 = tid*N;          
3        t2 = t1 + i;
4        t3 = data1[t2];
5        t4 = 0;
6        if( t3 != t4 ) {
7            t5 = data2[t2]; 
8            if( t5 != t4 ) {
9                x += 1; 
10           } else {
11               y += 2; 
12           }
13       } else {
14           z += 3; 
15       }
16       i++; 
17   } while( i < N ); 
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C
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E

▪ Consider this piece of CUDA kernel Code
▪ A, B, C, D, E, F, G are all instruction 

address(think of them in assembly)
▪ Different control path can be taken by 

different thread (depend on their tid)
▪ What is the problem?

▪ A shared PC and fetched instruction in 
all CUDA cores!
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▪ Consider this piece of CUDA kernel Code
▪ A, B, C, D, E, F, G are all instruction 

address(think of them in assembly)
▪ Different control path can be taken by 

different thread (depend on their tid)
▪ What is the problem?

▪ A shared PC and fetched instruction in 
all CUDA cores!

Control Flow Problem In SIMT

[1]



26

▪ Located for each warp
▪ What information should we keep track of

▪ PC: Program Counter of the next 
instruction to execute

▪ RPC: Reconvergence Program Counter 
▪ Active Mask: One bit for each thread, 

shows if this block of execution 
includes this thread or not

How to issue the instructions - SIMT Stack

[7]
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SIMT Stack

▪ Initially: Consist of one entry
▪ RPC NULL
▪ Next PC set to the first instruction in the function
▪ Active Mask set to all 1s

▪ Executes the instructions starting at the PC of the top entry, until
▪ Reached the RPC

▪ In this case, pop the entry
▪ Or a diverge branch happens

▪ Needs more branches, leave the entry in the stack
▪ When a diverge branch happens:

▪ Evaluate the RPC of those branches 
▪ Change the current top entry’s next PC to the RPC of those branched 

instructions
▪ Push the two branched entries into the stack with proper active masks
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SIMT Stack - Example
# RPC PC Active 

Mask

1 - A 1111

# RPC PC Active 
Mask

1 - G 1111

2 G F 0001

3 G B 1110

# RPC PC Active 
Mask

1 - G 1111

2 G F 0001

3 G E 1110

4 E D 0110

5 E C 1000

TOS

TOS

TOS[1]

New 
Entries

1

2

3
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SIMT Stack - Example (cont)
# RPC PC Active 

Mask

1 - G 1111

2 G F 0001

3 G E 1110

4 E D 0110

5 E C 1000 TOS

# RPC PC Active 
Mask

1 - G 1111

2 G F 0001

3 G E 1110 TOS

# RPC PC Active 
Mask

1 - G 1111 TOS
[1]

3

4
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Naive SIMT Lock
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▪ Consider this lock
▪ Threads diverges as different 

result from the while loop 
conditions

▪ C is set to the reconvergence 
point

▪ The one succeed to the lock still 
needs to wait for reconvergence 
of other threads, causing deadlock

[1]



GPU Memory Hierarchy
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Memory Hierarchy

▪ Different types of GPU memory
▪ Comparison between memory for GPU and CPU
▪ Use of shared memory and texture memory
▪ First-level memory architectures
▪ Memory partition unit

32



Overview of Memory System

▪ Local: thread-private data determined by the compiler statically. 
(usually means registers and low-level cache)

▪ Shared (scratchpad): on-chip memory per thread block managed by 
programmers using __shared__ specifier.

▪ Constant: Read-only, Compiler-determined constant values.
▪ Texture: Read-only memory associated with textures (often used in 

streaming and rendering).
▪ Global: Other memory accessible for all blocks and the host.

33



Overview of Memory System
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Size, Throughput, and Latency

Local(registers): ~256KB per thread, ~1 cycle
Shared: 32 banks w/ 4 bytes per bank, >1TB/s, 
~10 cycles
Constant: ~64KB, much slower than shared
Texture: > 100 texture units w/ 48KB per unit
Global: <900GB/s, >100 cycles
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Compare Memory for GPUs and CPUs
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▪ GPU:
▪ Texture cache works well on streaming (read-only, high 

throughput, uniform latency).
▪ Shared memory works well on intra-block communication.

▪ CPU:
▪ L1d cache, L1i cache, and TLB are used for reducing memory 

latency.
▪ L3 cache & RAM are used for sharing data among cores.



Using Shared Memory
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__shared__ specifier to 
declare
void __syncthreads();
works as a barrier in a 
thread block

Note: CUDA does not 
have built-in mutex.



Using Texture Memory
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▪ https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#te
xture-object-api



Using Texture Memory
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Kernel Code:



Using Texture Memory
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Host Code:



First-Level Memory Structures

▪ Unified L1 data cache and shared memory
▪ a subset of the global memory address space in the cache
▪ shared memory access: bank conflicts (i.e. two threads want to 

access the same bank of shared memory at the same time)
▪ cache read & write

▪ Texture cache
▪ often used in streaming and rendering
▪ High throughput, uniform latency
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Unified L1 data cache and shared memory

▪ Arbiter(2): handle bank conflicts (“replay”)
▪ Shared memory load, read (hit & miss), write (through & back)
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Texture Cache

▪ Read-only
▪ FIFO: hide the latency of 

miss requests that may need 
to be serviced from DRAM
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Memory Partition Unit

▪ L2 Cache: contains both graphics 
and compute data.

▪ Frame Buffer (FB)
▪ Raster Operations Pipeline (ROP): 

▪ Graphics operation (e.g. alpha 
blending). 

▪ Atomic operations (e.g. in 
CUDA programming model). 
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GPU Special Function Hardware
- Tensor Core
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Volta GV100 Streaming Multiprocessor



Volta Tensor Core Matrix Multiply and 
Accumulate

▪
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Using Tensor Cores to Accelerate Matrix 
Multiplications

▪ Example - Neural Networks:
▪ CNN, ResNet, …
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Boutros, Andrew, et al. "Beyond peak performance: Comparing the real performance of AI-optimized 
FPGAs and GPUs." 2020 International Conference on Field-Programmable Technology (ICFPT). 
IEEE, 2020.



GPU Special Function Hardware
- Ray Tracing Core
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Ray Tracing Problem
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[6]



Accelerate Ray Tracing Algorithms - RT Core
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Using Ray Tracing Hardware 
For General Problem
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▪ Example - Neighbor Search
▪ Construct BVH tree using the given data 

▪ Already HW accelerated
▪ Use the RT Core hardware to compute

▪ Good if querying multiple times
▪ By professor Yuhao Zhu, University of Rochester

▪ RTNN: Accelerating Neighbor Search Using Hardware Ray 
Tracing[9]

▪ Example - Tet-Mesh Point Location
▪ RTX Beyond Ray Tracing: Exploring the Use of Hardware Ray 

Tracing Cores for Tet-Mesh Point Location[10]
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