
Distributed File
Systems

Jinshu Liu, Pranay Mundra

Distributed File
System(DFS) ?

A distributed file system(DFS) is a
file system with data stored on one
or multiple servers. The data is
accessed and processed as if it was
stored on the local client machine.

Core Concepts

1. Availability
- is the system up and running

most of the time?
2. Scalability

- does the performance scale
according to the input?

3. Reliability
- does the system continue to

function in case of
hardware/software failure?

4. Consistency
- how does the system handle

parallel accesses and imitate and
ensure atomicity.

Today’s Topics
1. Google File System (GFS)
2. Windows Azure Storage (WAS)
3. General Parallel File System

(GPFS)

Google File System
(GFS)

Assumptions

1. Component failures are norm
2. Large files: 100 MB to multi-GB files
3. Reads: (1) large streaming reads; (2) small random reads
4. Writes: mostly large and sequential writes
5. Appends concurrently (producer-consumer queues / many-way merging)
6. High bandwidth > low latency

Overview

1. Architecture
2. Operations: read, write, append, snapshot, delete
3. Consistency model
4. Namespace management and locking

Architecture

A master +
multiple
chunkservers

Architecture

Chunk size: 64 MB

1. reduces clients’ need to interact with the master

2. a client is more likely to perform many operations on a given chunk

3. reduces the size of the metadata stored on the master

Metadata (In-Memory)

 1.the file and chunk namespaces, 2. the mapping from files to chunks, 3. the
locations of each chunk’s replicas

1 + 2 in operation log, 3 obtained at startup

Operations (Read)

1. sends a request to master
2. master replies with chunk

handle and locations of
the replicas

3. client then sends a
request to one of the
replicas, most likely the
closest one

Operations (Write)

Lease mechanism: to maintain a consistent
mutation order across replicas

Primary: A replica assigned by the master to
pick a serial order for all mutations, other
replicas follow this order

Master grants lease to primary.

Lease maintains a order, given by primary

Operations (Write)
1. The client asks the master which

chunkserver holds the current lease
for the chunk and the locations of the
other replicas.

2. The master gives the info
3. Client pushed data to all replicas
4. Client sends a write request to the

primary
5. Primary forwards the write request
6. The secondaries all reply to the

primary indicating that they have
completed the operation

7. The primary replies to the client

Operations (Write)
7. Error ? (succeed at the primary and a
subset of the secondary replicas.)

→ Our client code handles such errors by
retrying the failed mutation. It will make a
few attempts at steps (3) through (7) before
falling back to a retry from the beginning of
the write.

Decouple data flow and control flow

Data flow:

To fully utilize network bandwidth, the data
is pushed linearly along a chain of
chunkservers rather than distributed in
some other topology (e.g., tree).

Operations (Record append)
Similar to write operation.

After 4: check,

If to_append > chunk_empty_space:

The primary pads the chunk to the
maximum size, tells secondaries to do
the same, and replies to the client
indicating that the operation should be
retried on the next chunk.

Else:

Similar to write operation

Operations (Record append)

Atomic

At-least-once: If append fails, the
client retries the operation

→ generates inconsistent regions !

Consistency Model

States after a data mutation (write / append):

Consistent: all clients will always see the same data, regardless of which replicas
they read from

Inconsistent: clients will see the different data from replicas

…

Consistency Model

Defined: consistent and clients will see what the mutation writes in its entirety

Consistency Model

Consistent but undefined:
all clients see the same
data, but it may not reflect
what any one mutation has
written

 (concurrent writes)

Consistency Model

Defined interspersed with inconsistent:

A record append causes data (the “record”) to be appended atomically at least
once even in the presence of concurrent mutations

GFS may insert padding or record duplicates in between

Operations (Record append)
Append fails ?

The client retries the operation → duplicates and padding

→ generates inconsistent regions !

How to accommodate this relaxed model for GFS
Applications?

For reads:

1. Checksum: to discard invalid record (e.g., padding)
2. Unique ID: to discard duplicates

GFS provides a library for the applications to implement
Checksum and Unique ID easily

Operations (Snapshot)
Make a copy of file or a directory tree (exposed to users)

(1) Master first revokes any outstanding leases on the chunks in the files it is about
to snapshot.

(2) Master duplicates the metadata for the source file or directory tree

>> copy-on-write

When client writes to a chunk C after the snapshot operation:

(1) Client sends a request to the master to find the current lease holder
(2) The master notices that reference count of C > 1
(3) The master picks a new chunk handle C’, asks copy replicas to copy C to C’

locally
(4) The master grants one of the replicas a lease on the new C’ and replies to the

client

Operations (Delete)

1. Master adds deletion to logs
2. Rename the file with a hidden name (the file can still be back to normal)

>>>> After a period of time … (Lazy garbage collection)

3. During master’s file namespace’s regular scan, remove the filename
4. During master’s chunks namespace’s regular scan, remove the chunkname with

reference count < 1
5. When chunkserver sends the chunk’s information to the master, master cannot

find the chunk in chunk namespace, then the master will ask the chunkserver to
delete the chunk locally

Namespace Management and Locking

GFS logically represents its namespace as a
lookup table mapping full pathnames to
metadata

(GFS does not have a per-directory data
structure that lists all the files in that
directory)

Prefix compression can store the key into
memory efficiently

Namespace Management and Locking
Lock:

Example 1, do write operation on /d1/d2/leaf:

Acquire read lock on /d1, /d1/d2, and acquire write operation on /d1/d2/leaf

Example 2: create a file /home/user/foo:

Acquire read lock on /home, /home/user, and acquire write lock on
/home/user/foo

Don’t have to acquire write lock on /home/user

Locks are acquired in a consistent total order to prevent deadlock: they are first
ordered by level in the namespace tree and lexicographically within the same
level

Windows Azure Storage
(WAS)

Slide Credits: Calder et al., Windows Azure Storage: A Highly Available Cloud Storage Service with Strong Consistency

Introduction
Scalable Cloud Storage System

Supported Data Abstractions:

- Blobs (user files)
- Tables (structured storage)
- Queues (message delivery)
- Drives (NTFS volumes)

High Level Architecture

WAS Architectural Components

Storage Stamps :

- Cluster of N racks of storage nodes, where each rack is built out as a separate
fault domain with redundant networking and power.

Location Service:

- Manages all storage stamps for disaster management and load balancing
- Allocates accounts to storage stamps
- Distributed across two geographical locations for its own disaster recovery

Storage Stamp Architecture – Stream Layer
● Append-only distributed file system
● All data from the Partition Layer is stored into files (extents) in the Stream layer
● An extent is replicated 3 times across different fault and upgrade domains

○ With random selection for where to place replicas for fast MTTR
● Checksum all stored data

○ Verified on every client read
○ Scrubbed every few days

● Re-replicate on disk/node/rack failure or checksum mismatch

M

Extent Nodes (EN)

Paxos

M

M
Stream
Layer
(Distributed
File System)

Storage Stamp Architecture – Partition Layer
● Provide transaction semantics and strong consistency for Blobs, Tables and Queues
● Stores and reads the objects to/from extents in the Stream layer
● Provides inter-stamp (geo) replication by shipping logs to other stamps
● Scalable object index via partitioning

M

Extent Nodes (EN)

Paxos

M

M

Partition
Server

Partition
Server

Partition
Server

Partition
Server

Partition
Master Lock

Service

Partition Layer

Stream
Layer

Storage Stamp Architecture ● Stateless Servers
● Authentication + authorization
● Request routing

M

Extent Nodes (EN)

Paxos

Front End Layer
FE

M

M

Partition
Server

Partition
Server

Partition
Server

Partition
Server

Partition
Master

FE FE FE FE

Lock
Service

Partition Layer

Stream
Layer

Storage Stamp Architecture

M

Extent Nodes (EN)

Paxos

Front End Layer
FE

Incoming Write Request

M

M

Partition
Server

Partition
Server

Partition
Server

Partition
Server

Partition
Master

FE FE FE FE

Lock
Service

Ack

Partition Layer

Stream
Layer

Partition Layer

Scalable Object Index via Partitioning
• Partition Layer maintains an internal Object Index Table for each data

abstraction
• Blob Index: contains all blob objects for all accounts in a stamp
• Table Entity Index: contains all entities for all accounts in a stamp
• Queue Message Index: contains all messages for all accounts in a stamp

• Scalability is provided for each Object Index
• Monitor load to each part of the index to determine hot spots

• Index is dynamically split into thousands of Index RangePartitions based on load

• Index RangePartitions are automatically load balanced across servers to quickly adapt to changes
in load

Account
Name

Container
Name

Blob
Name

aaaa aaaa aaaaa

…….. …….. ……..

…….. …….. ……..

…….. …….. ……..

…….. …….. ……..

…….. …….. ……..

…….. …….. ……..

…….. …….. ……..

…….. …….. ……..

…….. …….. ……..

…….. …….. ……..

…….. …….. ……..

zzzz zzzz zzzzz

• Split index into
RangePartitions based on load

• Split at PartitionKey
boundaries

• PartitionMap tracks Index
RangePartition assignment to
partition servers

• Front-End caches the
PartitionMap to route user
requests

• Each part of the index is
assigned to only one Partition
Server at a time

Storage Stamp

Partition
Server

Partition
Server

Account
Name

Container
Name

Blob
Name

richard videos tennis

……… ……… ………

……… ……… ………

zzzz zzzz zzzzz

Account
Name

Container
Name

Blob
Name

harry pictures sunset

……… ……… ………

……… ……… ………

richard videos soccer

Partition
Server

Partition
Master

Partition Layer - Index Range Partitioning

Front-End
Server

PS 2 PS 3

PS 1

A-H: PS1
H’-R: PS2
R’-Z: PS3

A-H: PS1
H’-R:
PS2

R’-Z: PS3

Partition
Map

Blob Index

Partition
Map

Account
Name

Container
Name

Blob
Name

aaaa aaaa aaaaa

……… ……… ………

……… ……… ………

harry pictures sunrise
A-H

R’-ZH’-R

Stream Layer

www.buildwindows.com

Stream Layer

• Append-Only Distributed File System
• Streams are very large files

• Has file system like directory namespace
• Stream Operations

• Open, Close, Delete Streams
• Rename Streams
• Concatenate Streams together
• Append for writing
• Random reads

www.buildwindows.com

Extent E2 Extent E3

B
lo
c

k
B
lo
c

k
B
lo
c

k
B
lo
c

k

B
lo
c

k
B
lo
c

k
B
lo
c

k
B
lo
c

k

Stream Layer Concepts

Block
• Min unit of write/read
• Checksum
• Up to N bytes (e.g. 4MB)

Extent
• Unit of replication
• Sequence of blocks
• Size limit (e.g. 1GB)
• Sealed/unsealed

Stream
• Hierarchical namespace
• Ordered list of pointers

to extents
• Append/Concatenate

B
lo
c

k
B
lo
c

k
B
lo
c

k
B
lo
c

k

B
lo
c

k
B
lo
c

k
B
lo
c

k

Extent E4

Stream //foo/myfile.data

Ptr E1 Ptr E2 Ptr E3 Ptr E4

sealed unsealedsealed unsealedsealed unsealed
Extent E1

www.buildwindows.com

Creating an Extent
SMSMStream
Master

Paxos

Partition Layer

EN 1 EN 2 EN 3 EN

Create Stream/Extent

Allocate Extent replica set

Primary Secondary A Secondary B

EN1 Primary
EN2, EN3 Secondary

www.buildwindows.com

Replication Flow
SMSMSM

Paxos

Partition Layer

EN 1 EN 2 EN 3 EN

Append

Primary Secondary A Secondary B

Ack

EN1 Primary
EN2, EN3 Secondary

www.buildwindows.com

Providing Bit-wise Identical Replicas
• Want all replicas for an extent to be bit-wise the same, up to a committed length

• Want to store pointers from the partition layer index to an extent+offset
• Want to be able to read from any replica

• Replication flow
• All appends to an extent go to the Primary
• Primary orders all incoming appends and picks the offset for the append in the

extent
• Primary then forwards offset and data to secondaries
• Primary performs in-order acks back to clients for extent appends

• Primary returns the offset of the append in the extent
• An extent offset can commit back to the client once all replicas have written that

offset and all prior offsets have also already been completely written
• This represents the committed length of the extent

www.buildwindows.com

?

Dealing with Write Failures
Failure during append
1. Ack from primary lost when going back to partition layer

• Retry from partition layer can cause multiple blocks to be appended (duplicate
records)

2. Unresponsive/Unreachable Extent Node (EN)
• Append will not be acked back to partition layer
• Seal the failed extent
• Allocate a new extent and append immediately

Stream //foo/myfile.dat

Ptr E1 Ptr E2 Ptr E3 Ptr E4

Extent E5

Ptr E5

Extent E1 Extent E2 Extent E3 Extent E4

www.buildwindows.com

Extent Sealing (Scenario 1)
SMSMStream
Master

Paxos

Partition Layer

EN 1 EN 2 EN 3 EN 4

Append

Primary Secondary A Secondary B

Ask for current length120
120

Sealed at 120

Seal Extent
Seal Extent

www.buildwindows.com

Extent Sealing (Scenario 1)
SMSMStream
Master

Paxos

Partition Layer

EN 1 EN 2 EN 3 EN 4

Primary Secondary A Secondary B

Sync with SM
120

Sealed at 120

Seal Extent

www.buildwindows.com

Extent Sealing (Scenario 2)
SMSMSM

Paxos

Partition Layer

EN 1 EN 2 EN 3 EN 4

Append

Primary Secondary A Secondary B

Ask for current length
120

Sealed at 100

Seal Extent

100

Seal Extent

www.buildwindows.com

Extent Sealing (Scenario 2)
SMSMSM

Paxos

Partition Layer

EN 1 EN 2 EN 3 EN 4

Primary Secondary A Secondary B

Sync with SM

Sealed at 100

Seal Extent

100

www.buildwindows.com

Providing Consistency for Data Streams
SMSMSM

EN 1 EN 2 EN 3

Primary Secondary A Secondary B

Partition
Server

Network partition
• PS can talk to EN3
• SM cannot talk to EN3

• For Data Streams, Partition
Layer only reads from offsets
returned from successful
appends
• Committed on all replicas
• Row and Blob Data Streams

• Offset valid on any replica
Safe to read from EN3

www.buildwindows.com

Providing Consistency for Log Streams
SMSMSM

EN 1 EN 2 EN 3

Primary Secondary A Secondary B

Partition
Server

Check commit length
• Logs are used on partition load

• Commit and Metadata log
streams

• Check commit length first
• Only read from
• Unsealed replica if all replicas

have the same commit length
• A sealed replica Check commit length

Seal Extent

Use EN1, EN2 for loading

Network partition
• PS can talk to EN3
• SM cannot talk to EN3

www.buildwindows.com

WAS approach to CAP Theorem
• Layering and co-design provides extra flexibility to achieve “C” and “A” at same time while

being partition/failure tolerant(“P”) for the fault model
• Stream Layer

• Availability with Partition/failure tolerance
• For Consistency, replicas are bit-wise identical up to the commit length

• Partition Layer
• Consistency with Partition/failure tolerance
• For Availability, RangePartitions can be served by any partition server and are moved

to available servers if a partition server fails

• Designed for specific classes of partitioning/failures seen in practice
• Process to Disk to Node to Rack failures/unresponsiveness
• Node to Rack level network partitioning

General Parallel File System
(GPFS - IBM)

Clusters

Collections of machines connected
together for the purpose of parallel
processing.

Composed of independent and
redundant components. More
specifically, they are a collection of
regular computers put closely
together.

Running applications in parallel

Problem

Connect individual computer
together, such that, we have fully
distributed memory and storage.

How to communicate data between
all nodes?

How to handle parallel access to
same the file or execution of the
same program from different
nodes?

Solution - GPFS

● Put all disks together and make
them accessible to all nodes
through a single point.

● Imitate as closely as possible the
behaviour of a general purpose
POSIX filesystem running on a
single machine

● Conceptually similar to a Big Single
Multicore Machine

GPFS Implementation Details

● Synchronization -
○ parallel read/write disk accesses from different nodes

● Load Balancing -
○ equal utilization of all disks

● Logging and Recovery
● Fault Tolerance -

○ node failure, disk failure, communication failure

Synchronization
Distributed locking

- GPFS assigns one of the does as the lock token
manager

- Byte range file lock tokens - the first node to
access the file gets access to the full range of
the file. Any other node there after will get a
token in the byte range that they try to write to

- Good for infrequent parallel accesses
- Concurrent writes to the same file to different

parts is as fast as writing to different files and
then merging.

Synchronization
Centralized Management

- Nodes are assigned parts of files and are solely
responsible for all IO to that part of the file

- If a node wants to update part of the file it
doesn’t own, it must send a request to the node
responsible for that part

- Good for frequent parallel accesses and fine
grain sharing

Load Balancing

- Data Striping
- Large writes are divided into equal parts and written to all disks at the same time.
- Equally distributes the load to all disks
- Improves Throughput
- Decreases Latency

- Prefetching and buffering
- Maintains a BufferPool
- Allows to prefetch expected data or prepare data for pending requests

Logging & Recovery

- Logs are important in case of failure. They contain information about what
the nodes wanted to do to the filesystem.

- Updating the file system is not atomic, hence if a node fails while it was
trying to write back to disk, this change should be redoable.

- Each node has a separate log file for each file system it mounts, and is
located on that file system

- Since any node can access the log on a file system, any node can perform
recovery operations in case of node failures.

Fault Tolerance - Node Failure

- Need to restore the file system and release lock from the failed node
- File system restoration is easy since logs are stored on the file system

and can be accessed by any other node
- Lock token protocol ensures that failed node was the only one

accessing the data at that time
- Lock token manager releases the lock after recovery procedure

completes

Fault Tolerance - Communication Failure

- Some messages cannot reach some nodes, need to be able to detect that
- Periodic heartbeat message service ensures that all nodes are reachable and

running
- Monitor node will send out a message to everyone and wait for a response

from every single node

Fault Tolerance - Disk Failure

- Hardware failures of the hard drives
- Need data redundancy

- RAID
- Replication

GFS vs WAS vs GPFS

1. Google File System and Windows Azure Storage are geographically
distributed, where as General Parallel File System is used to create a
cluster within a limited region

2. Windows Azure Storage uses a global namespace to narrow down the
data location, where as Google File System uses a single master and
allows the client to talk to each chunk server (partition server
counterpart) directly.

