
3/30/2022

1

CONSISTENCY MODELS FROM A 
PROGRAMMER’S PERSPECTIVE

Presented by: Beakal Lemeneh and Zeyu Xu

THREADS CANNOT BE 
IMPLEMENTED AS A LIBRARY

Hans-J. Boehm. 2005. Threads cannot be implemented as a library. SIGPLAN Not. 40, 6 (June 2005), 261–268. 

DOI:https://doi.org/10.1145/1064978.1065042

IMPLEMENTATION OF MULTI-THREADED PROGRAMS

● Threads provided as a part of language specification.

○ Java

○ C#

○ Ada

● Thread support provided as an add-on library.

○ C

○ C++

PTHREAD IMPLEMENTATION

What causes concurrency issues?

● Hardware may reorder memory operations.

● Compilers may reorder memory operations.

1 2

3 4



3/30/2022

2

INFORMAL DEFINITION OF THE MEMORY MODEL FOR PTHREAD

“Applications shall ensure that access to any memory location by more than one thread of control 

(threads or processes) is restricted such that no thread of control can read or modify a memory location 

while another thread of control may be modifying it. Such access is restricted using functions that 

synchronize thread execution and also synchronize”

Source: "Memory Synchronization" in IEEE Std 1003.1-2001 (Revision of IEEE Std 1003.1-1996 and IEEE Std 

1003.2-1992) , pp. 100, 6 Dec. 2001, doi: 10.1109/IEEESTD.2001.93364. 

SOME OF THE SUPPORTED SYNCHRONIZATION FUNCTIONS 

● fork()

● pthread_barrier_wait()

● pthread_cond_broadcast() 

● pthread_cond_signal() 

● pthread_cond_timedwait()

● pthread_cond_wait() 

● pthread_create() 

● pthread_join() 

● pthread_mutex_lock() 

● pthread_mutex_timedlock() 

● pthread_mutex_trylock()

● pthread_mutex_unlock()

● pthread_spin_lock()

● pthread_spin_trylock()

● pthread_spin_unlock()

● pthread_rwlock_rdlock()

● pthread_rwlock_timedrdlock()

● pthread_rwlock_timedwrlock()

● pthread_rwlock_tryrdlock()

● pthread_rwlock_trywrlock() 

REASON FOR USING THIS DEFINITION

“Formal definitions of the memory model were rejected as unreadable by the vast majority of 

programmers. In addition, most of the formal work in the literature has concentrated on the memory as 

provided by the hardware as opposed to the application programmer through the compiler and runtime 

system. It was believed that a simple statement intuitive to most programmers would be most effective”

PROBLEMS WITH THIS SPECIFICATION 

● Ambiguous - what happens when rules are violated? How big should a memory location be? 

● Informal - doesn’t say exactly what order memory operations take place 

● Makes ensuring concurrency the responsibility of the application developer instead of language 

designer - more work for the application developer 

5 6

7 8



3/30/2022

3

THE PTHREAD’S SOLUTION TO CONCURRENCY ISSUES 

● Memory barrier instructions in synchronization functions prevent reordering of memory operations 

out of the critical section 

● Pthread functions are treated as opaque functions where anything is possible (i.e. read/write global 

value), so that memory operations cannot be moved around the call 

WHAT ARE OPAQUE FUNCTIONS?

● A call to a function that the compiler has no prior information about. 

● This implies that the compiler can make no assumptions about the side effects of this call except what 

is guaranteed by the language definition.. 

● Further, the compiler can never skip making a call to this function even when calling it looks useless 

since there is no way for the compiler to know this for certain.

Source: https://stackoverflow.com/questions/48078415/what-does-an-opaque-function-call-mean-in-

compiler-optimization

OPAQUE FUNCTION EXAMPLE

#include “lib.h”

...

void f() {

x = 0;

b();

printf(“%d\n”, x);

} ...

int x;

... 

void b();

...

Main.c lib.h lib.c (hidden)

#include “lib.h”

...

void b() {

x++; 

}

...

WHY ARE THESE “WORKAROUNDS” NEEDED? 

● The C/C++ compiler does not see threads! 

● “Just another runtime library” 

9 10

11 12

https://stackoverflow.com/questions/48078415/what-does-an-opaque-function-call-mean-in-compiler-optimization


3/30/2022

4

PROBLEMATIC EXAMPLE:

if(globals.hasData) {

int prelock_value = globals.foo; 

pthread_mutex_lock(&m); 

if(prelock_value != globals.foo) {

// value changed before we could lock it, do something different

DoSpecialStuffSinceValueChangedWhileWaiting(); 

pthread_mutex_unlock(&m); 

return;

}

DoOtherStuff();

...

Source: https://stackoverflow.com/questions/26476139/why-do-global-variables-cause-trouble-for-compiler-

optimizations-in-function-cal

PROBLEMATIC EXAMPLE:

if(globals.hasData) {

int prelock_value = globals.foo; 

pthread_mutex_lock(&m); 

if(false /* always false: prelock_value != globals.foo */) {

// value changed before we could lock it, do something different

DoSpecialStuffSinceValueChangedWhileWaiting(); 

pthread_mutex_unlock(&m); 

return;

}

DoOtherStuff();

...

Source: https://stackoverflow.com/questions/26476139/why-do-global-variables-cause-trouble-for-compiler-

optimizations-in-function-cal

PROBLEMATIC EXAMPLE AFTER COMPILATION:

if(globals.hasData) {

pthread_mutex_lock(&m); 

// everything was removed.

DoOtherStuff();

...

Source: https://stackoverflow.com/questions/26476139/why-do-global-variables-cause-trouble-for-compiler-

optimizations-in-function-cal

NOT ALL PROBLEMS ARE SOLVED

● Compiler may introduce race conditions that the programmer does not expect

○ When is a race expected to occur? When does it ACTUALLY occur? 

○ No formal specification 

● Compiler cannot optimize program in accordance to best practice due to lack of information 

○ Either accept poor performance, or intentionally/unintentionally break the rules 

■ Programs are now more likely to have memory errors. 

13 14

15 16

https://stackoverflow.com/questions/26476139/why-do-global-variables-cause-trouble-for-compiler-optimizations-in-function-cal
https://stackoverflow.com/questions/26476139/why-do-global-variables-cause-trouble-for-compiler-optimizations-in-function-cal
https://stackoverflow.com/questions/26476139/why-do-global-variables-cause-trouble-for-compiler-optimizations-in-function-cal


3/30/2022

5

CORRECTNESS ISSUES

● Concurrent Modification (Speculation leading to invalid states)

● Rewriting of Adjacent Data (Bit-fields overwriting data in the same word)

● Register Promotion (Optimizing variables out of critical section)

CONCURRENT MODIFICATION 

Optimization: Speculation 

● Branch instructions can be expensive if it is the common case 

● May be faster to speculate then “undo” the assignment for the rare cases 

CONCURRENT MODIFICATION 

int x = y = 0;

T1:

if (x == 1) ++y;

T2:

if (y == 1) ++x;

int x = y = 0;

T1:

++y; if (x != 1) --y;

T2:

++x; if (y != 1) --x;

Original: Optimized:

CONCURRENT MODIFICATION 

int x = y = 0;

T1:

if (x == 1) ++y;

T2:

if (y == 1) ++x;

Possible states of (x, y): (0, 0)

int x = y = 0;

T1:

++y; if (x != 1) --y;

T2:

++x; if (y != 1) --x;

Possible states of (x, y):

Original: Optimized:

17 18

19 20



3/30/2022

6

CONCURRENT MODIFICATION 

int x = y = 0;

T1:

if (x == 1) ++y;

T2:

if (y == 1) ++x;

Possible states of (x, y): (0, 0)

int x = y = 0;

T1:

++y; if (x != 1) --y;

T2:

++x; if (y != 1) --x;

Possible states of (x, y):

Original: Optimized:

CONCURRENT MODIFICATION 

int x = y = 0;

T1:

if (x == 1) ++y;

T2:

if (y == 1) ++x;

Possible states of (x, y): (0, 0)

int x = y = 0;

T1:

++y; if (x != 1) --y;

T2:

++x; if (y != 1) --x;

Possible states of (x, y): (0, 0)

Original: Optimized:

CONCURRENT MODIFICATION 

int x = y = 0;

T1:

if (x == 1) ++y;

T2:

if (y == 1) ++x;

Possible states of (x, y): (0, 0)

int x = y = 0;

T1:

++y; if (x != 1) --y;

T2:

++x; if (y != 1) --x;

Possible states of (x, y): (0, 0)

Original: Optimized:

CONCURRENT MODIFICATION 

int x = y = 0;

T1:

if (x == 1) ++y;

T2:

if (y == 1) ++x;

Possible states of (x, y): (0, 0)

int x = y = 0;

T1:

++y; if (x != 1) --y;

T2:

++x; if (y != 1) --x;

Possible states of (x, y): (0, 0)

Original: Optimized:

21 22

23 24



3/30/2022

7

CONCURRENT MODIFICATION 

int x = y = 0;

T1:

if (x == 1) ++y;

T2:

if (y == 1) ++x;

Possible states of (x, y): (0, 0)

int x = y = 0;

T1:

++y; if (x != 1) --y;

T2:

++x; if (y != 1) --x;

Possible states of (x, y): (0, 0), (1, 1)

Original: Optimized:

CONCURRENT MODIFICATION 

Optimization: Speculation 

● Branch instructions can be expensive if it is the common case 

● May be faster to speculate then “undo” the assignment for the rare cases 

Issue:

● Optimization results in new possible state in program 

● Authors mentioned no known real-life bugs caused by this, but still violation of pthreads specification 

REWRITING OF ADJACENT DATA 

Optimization: consolidating bit-fields 

● Compiler combines variables into a single word for space efficiency 

● Memory location of variables not transparent to application programmer 

REWRITING OF ADJACENT DATA 

Sample Code:

struct x {

char a, b, c, d;

};

What does the struct look like in 

memory?

d c b a

25 26

27 28



3/30/2022

8

REWRITING OF ADJACENT DATA 

struct x {

char a, b, c, d;

};

T1:

x.b = ‘b’;

x.c = ‘c’;

x.d = ‘d’;

T2:

x.a = ‘a’

REWRITING OF ADJACENT DATA 

struct x {

char a, b, c, d;

};

x.a = ‘\0’;

x.b = ‘\0’;

x.c = ‘\0’;

x.d = ‘\0’;

T1:

x = “dcb\0” | x.a;

T2:

x.a = ‘a’;

REWRITING OF ADJACENT DATA 

struct x {

char a, b, c, d;

};

x.a = ‘a’;

x.b = ‘\0’;

x.c = ‘\0’;

x.d = ‘\0’;

T1:

x = “dcb\0” | x.a;

T2:

x.a = ‘a’;

REWRITING OF ADJACENT DATA 

struct x {

char a, b, c, d;

};

x.a = ‘a’;

x.b = ‘\0’;

x.c = ‘\0’;

x.d = ‘\0’;

T1:

x = “dcb\0” | x.a;

T2:

x.a = ‘a’;

29 30

31 32



3/30/2022

9

REWRITING OF ADJACENT DATA 

struct x {

char a, b, c, d;

};

x.a = ‘a’;

x.b = ‘\0’;

x.c = ‘\0’;

x.d = ‘\0’;

T1:

x = “dcb\0” | ‘\0’;

T2:

x.a = ‘a’;

REWRITING OF ADJACENT DATA 

struct x {

char a, b, c, d;

};

x.a = ‘\0’;

x.b = ‘b’;

x.c = ‘c’;

x.d = ‘d’;

T1:

x = “dcb\0” | x.a;

T2:

x.a = ‘a’;

REWRITING OF ADJACENT DATA 

Optimization: consolidating bit-fields 

● Compiler combines variables into a single word for space efficiency 

● Memory location of variables not transparent to application programmer 

Issue: 

● Threads modifying different variables update same memory location 

● Modifications are not atomic, race condition occurs 

REWRITING OF ADJACENT DATA 

Optimization: register promotion of variables 

● Variable stored in register instead of memory to improve performance 

● Store to/read from memory around opaque functions for correct behavior 

33 34

35 36



3/30/2022

10

REGISTER PROMOTION

● x is a global variable

● Lock is acquired conditionally

for (...) {

...

if (mt) pthread_mutex_lock(...);

x = ... x ...

if (mt) pthread_mutex_unlock(...);

}

REGISTER PROMOTION

● x is a global variable

● Lock is acquired conditionally

● Assume the compiler determines 

that the conditionals are usually not 

taken

for (...) {

...

if (mt) pthread_mutex_lock(...);

x = ... x ...

if (mt) pthread_mutex_unlock(...);

}

REGISTER PROMOTION

● x is a global variable

● Lock is acquired conditionally

● Assume the compiler determines 

that the conditionals are usually not 

taken

● r is a register variable 

r=x; 

for (...) {

... 

if (mt) {

x = r; pthread_mutex_lock(...); r = x;

}

r = ... r ...

if (mt) {

x = r; pthread_mutex_unlock(...); r = x;

}

}

x=r;

REGISTER PROMOTION

● x is a global variable

● Lock is acquired conditionally

● Assume the compiler determines 

that the conditionals are usually not 

taken

● r is a register variable 

● modify x outside of critical section! 

r=x; 

for (...) {

... 

if (mt) {

x = r; pthread_mutex_lock(...); r = x;

}

r = ... r ...

if (mt) {

x = r; pthread_mutex_unlock(...); r = x;

}

}

x=r;

37 38

39 40



3/30/2022

11

REWRITING OF ADJACENT DATA 

Optimization: register promotion of variables 

● Variable stored in register instead of memory to improve performance 

● Store to/read from memory around opaque functions for correct behavior 

Issue: 

● Variable is originally shared across multiple threads protected by a lock 

● Memory location of shared variable now modified outside of critical section 

PERFORMANCE ISSUES

● Pthreads restricts data contentions among threads

○ Potential benefit from allowing data races

■ Hardware atomic instructions are typically expensive

■ Hardware atomic instructions might implicitly prevent hardware reordering of memory references

● Synchronization is done through pthread primitives

○ Dynamic library calling overhead

○ Less flexibility than direct calls to hardware primitives

EXAMPLE: SIEVE OF ERATOSTHENES

for (my_prime = 2; my_prime < 10000; ++my_prime)

if (!get(my_prime)) {

for (multiple = my_prime; multiple < 100000000; multiple += my_prime) 

if (!get(multiple)) set(multiple);

}

bool A[99999999] = {false, …, false};

get(i) {return A[i]; }

set(i) {A[i] = true; }

SIEVE OF ERATOSTHENES

2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

41 42

43 44



3/30/2022

12

COLANDER OF ERATOSTHENES

2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

COLANDER OF ERATOSTHENES

2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

GRATER OF ERATOSTHENES

2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

GRATER OF ERATOSTHENES

2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

45 46

47 48



3/30/2022

13

GAUZE OF ERATOSTHENES

2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

GAUZE OF ERATOSTHENES

2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

CENTRIFUGE OF ERATOSTHENES

2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

CENTRIFUGE OF ERATOSTHENES

2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

49 50

51 52



3/30/2022

14

SIEVE OF ERATOSTHENES

2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

PERFORMANCE

● Mutex

● Spinlock

● unsafe

CONCLUSION

● Compiler optimizations can lead to correctness issues due to not understanding difference between a 

regular runtime library and a threading library

● Compiler cannot perform certain optimizations due to threading library information hiding

● Threads need to visible to the complier C++ MEMORY ORDER

53 54

55 56



3/30/2022

15

STD::MEMORY_ORDER

• memory_order_relaxed

• memory_order_consume

• memory_order_acquire

• memory_order_release

• memory_order_acq_rel

• memory_order_seq_cst

MEMORY_ORDER_RELAXED

• No synchronization or ordering constraints applied.

• Only guarantees the operation’s atomicity.

• // Thread 1:

• r1 = y.load(std::memory_order_relaxed); // A

• x.store(r1, std::memory_order_relaxed); // B

• // Thread 2:

• r2 = x.load(std::memory_order_relaxed); // C 

• y.store(42, std::memory_order_relaxed); // D

MEMORY_ORDER_CONSUME

• A load operation with this memory order performs a consume operation on the affected 

memory location.

• No reads or writes in the current thread dependent on the value currently loaded can 

be reordered before this load.

• Writes to data-dependent variables in other threads that release the same atomic 

variable are visible in the current thread.

57 58

59 60



3/30/2022

16

MEMORY_ORDER_ACQUIRE

• A load operation with this memory order performs the acquire operation on the affected 

memory location.

• No reads or writes in the current thread can be reordered before this load.

• All writes in other threads that release the same atomic variable are visible in the 

current thread.

MEMORY_ORDER_RELEASE

• A store operation with this memory order performs the release operation.

• No reads or writes in the current thread can be reordered after this store. 

• All writes in the current thread are visible in other threads that acquire the same atomic 

variable.

• All writes that carry a dependency into the atomic variable become visible in other 

threads that consume the same atomic.

MEMORY_ORDER_ACQ_REL

• A read-modify-write operation with this memory order is both an acquire operation and 

a release operation.

MEMORY_ORDER_SEQ_CST

• A load operation with this memory order performs an acquire operation

• A store performs a release operation.

• A read-modify-write performs both an acquire operation and a release operation.

61 62

63 64



3/30/2022

17

RELAXED ORDERING

X == 42, y == 42 also allowed

RELEASE-CONSUME ORDERING

VOLATILE

• Within a single thread of execution, a volatile access cannot be optimized out or 

reordered relative to another visible side effect that is separated by a sequence point 

from the volatile access.

• Volatile access does not establish inter-thread synchronization.

• Volatile accesses are not atomic (concurrent read and write is a data race) and do not 

order memory (non-volatile memory accesses may be freely reordered around the 

volatile access).

BIBLOGRAPHY

• Hans-J. Boehm. 2005. Threads cannot be implemented as a library. SIGPLAN Not. 40, 6 

(June 2005), 261–268. DOI:https://doi.org/10.1145/1064978.1065042

• "Memory Synchronization" in IEEE Std 1003.1-2001 (Revision of IEEE Std 1003.1-1996 

and IEEE Std 1003.2-1992) , pp. 100, 6 Dec. 2001, doi: 10.1109/IEEESTD.2001.93364. 

• https://stackoverflow.com/questions/26476139/why-do-global-variables-cause-trouble-

for-compiler-optimizations-in-function-cal

• Alex Mononen and Jack Yu’s Slide from the previous year

65 66

67 68

https://stackoverflow.com/questions/26476139/why-do-global-variables-cause-trouble-for-compiler-optimizations-in-function-cal

