
“Challenges of Scaling Algebraic
Multigrid Across Modern
Multicore Architectures.”

Allison H. Baker, Todd Gamblin, Martin Schulz, and Ulrike
Meier Yang

Multigrid Solvers

  Method of solving linear equation systems
  Transforms linear equation system into matrix

equation of the form Au = f

€

1
Δx 2

−4 1 1
1 −4 1 1

1 −4 1
1 −4 1 1

1 1 −4 1 1
1 1 −4 1

1 −4 1
1 1 −4 1

1 1 −4

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

φ1,1
φ1,2
φ1,3
φ2,1
φ2,2
φ2,3
φ3,1
φ3,2
φ3,3

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

= 4πG

ρ1,1
ρ1,2
ρ1,3
ρ2,1
ρ2,2
ρ2,3
ρ3,1
ρ3,2
ρ3,3

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

€

∇2Φ = 4πGρ ⇒ AΦ = 4πGρ

Multigrid Solution Process [1,2]
1.  Run iterative smoother (e.g.

Gauss-Seidel) on full-resolution
matrix to remove high-
frequency errors from initial
guess

2.  Coarsen problem domain,
producing a lower-resolution
grid with a smaller matrix

3.  Run smoother again on
coarsened equation, removing
lower-frequency error terms

4.  Replace initial guess with
interpolated coarse solution.

5.  Repeat Steps 1-4 until solution
converges.

Image Source: Baker at al. “Challenges of Scaling Algebraic
Multigrid across Modern Multicore Architectures”. IPDPS, 2011.

Parallelism
  Matrix is stored in a parallel version of the compressed-

sparse-row (CSR) format [3]

  Each processor gets a set of matrix rows; row-space further
subdivided into local and remote referencing matrices.

  Local range must be communicated to receive processors
during setup phase.

Test Problems

  Laplace problem on 3D
structured grid
  Simple structure, seven

point stencil.

  3D diffusion problem,
complicated geometry
  Complex grid jumps [1],

anisotropic geometry

Test Machines

  Hera: 864-node QDR-InfiniBand system
  Four 2.3 GHz AMD quad-core processors per node
  32 GB RAM per node (NUMA)

  Jaguar: 18688-node Cray XT-5
  Two AMD Operon Hex-core processors per node

  16 GB RAM per node (NUMA)

  Intrepid: 40960-node Quad-core Blue Gene/P
  One quad-core 850 MHz Power 450 processor/node
  2 GB memory per node (UMA)

Quad-Core Cluster (Hera)
  864 nodes, QDR InfiniBand

interconnects

  4 sockets per node, quad-
core AMD 8356 Opterons

  2 MB L3 shared cache

  32 GB of memory, divided
between four sockets

  Memory outside of local
partition can be accessed
via HyperTransport

Image Source: Advanced Micro Devices, Inc. via Wikipedia

Cray XT5 (Jaguar)
  18868 Nodes nodes,

SeaStar 2+ interconnects

  Two AMD Hex-Core
Opterons per node

  16 GB of memory, divided
up between sockets

  2D torus network topology

Image Source: NCCS
(http://www.nccs.gov/wp-content/uploads/2010/02/AMD-5.09.10.pdf)

BlueGene/P Cluster
(Intrepid)

  40960 nodes, one quad-core PowerPC 450
processor per node

  2 GB memory per node, shared by all cores
  Uniform Memory Access

  3D torus network topology
  Periodicity in all dimensions

Result Summary
  Hera

  Extremely poor MPI-only
performance

  1-thread OpenMP run performs
worst during solve

  H4x4 best at low core counts,
H2x8 overtakes it

  Jaguar
  Slightly better MPI-only

performance, but still poor
  NUMA-related issues on the

H1x12 MG-1 trial
  H4x3, H2x6 perform best, esp.

with optimization

  Intrepid
  Fast node interconnects make

MPI viable

Image Source: Baker et al. “Challenges of Scaling Algebraic Multigrid across
Modern Multicore Architectures.” IPDPS, 2011.

Results Discussion
  NUMA effects noticeable on Hera, Jaguar.

  Use of MCSup to constrain threads to local memory
partitions improves performance on NUMA machines

  Process pinning required for memory locality
constraints to be effective

  Poor interconnect speed on non-BlueGene
machines makes MPI transactions expensive.
  Expected to become a problem as number of cores

on chip outstrips increases in interconnect speed.

“Hierarchical Parallelization of
Gene Differential Analysis”

Mark Needham, Rui Hu, Sandhya Dwarkadas, Xing Qiu

Gene Differential Association
Analysis

  Determine whether two genes have different
correlation patterns under different conditions.

  Partition n subjects into G subgroups. Calculate
correlation vectors and N-statistics (measures
change in gene correlation over two conditions [4]).

  Shuffle groups K times and recalculate N-statistics
using new groupings.

  Compute p-value using permuted N-statistics (low
p-value indicates change in gene correlation across
conditions [4]).

Parallelized Algorithm
  Permutation tasks shared

across processors using
Python and MPI.

  N-statistics calculated
using C++ and pthreads.

  m x n data array replicated
across MPI processes

  Two m x G subgroup
arrays, m-element N-
statistic array on each MPI
process (shared access for
pthreads).

Image Source: Needham et al. “Hierarchical Parallelization of Gene
Differential Association Analysis.” BMC Bioinformatics, 2011.

Hardware
  40 cores across 5 machines

  One processor used for running Python script; that
machine is not used for computation

  32 cores available

  Dual quad-core 3 GHz Intel Xeon processors

  16 GB memory, Gigabit Ethernet interconnects

  6 MB L2 cache per core

Result Summary

  Multithreaded simulations
outperform MPI alone

  MPI carries significant
memory overhead due to
data replication

  Pinning processes to cores
improves multithreaded
performance

  Additional threading
beyond 2 threads yields
little advantage on pinned
system

Image Source: Needham et al. “Hierarchical Parallelization of Gene
Differential Association Analysis.” BMC Bioinformatics, 2011.

Result Summary,ctd.

  Jagged speedup curve
attributed to imperfect
load balancing.

  Without process pinning,
scheduling errors amplify
the uneven quality of the
speedup curve [4].

  Scheduling issues can also
seriously degrade
performance in unpinned
threads [4].

Image Source: Needham et al. “Hierarchical Parallelization of Gene
Differential Association Analysis.” BMC Bioinformatics, 2011.

References
1.  Baker, A. et al. “Challenges of Scaling Algebraic

Multigrid Across Modern Multicore Architectures.”
IPDPS, 2011.

2.  Falgout, R. D. “An Introduction to Algebraic Multigrid”,
Computing in Science And Engineering,2006.

3.  Falgout, R. D., Jones, J. E., and Yang, U. M. “Pursuing
Scalability for Hypre’s Conceptual Interfaces”, ACM
Transactions in Mathematical Software, 2005.

4.  Needham, M. Rui, H., Dwarkadas, S., Qiu, X.
“Hierarchical Parallelization of Gene Differential
Association Analysis.”, BMC Bioinformatics, 2011.

