

Lecture 2: Regular Languages

CSC280, Lecture 2 1

Finite Automata

A finite automaton is a 5-tuple

� ��� ��� �� �	� �
 �

, where

1.

�

is a finite set called the states,

2.

�

is a finite set called the alphabet,

3.

�� � � � � � �

is the transition function,

4. �� � �

is the initial state, and

5.

� �

is the set of accepting states.

Let

��� � ��� ��� �� �� �
 �

be an FA. A string � � ���� � � ��� is accepted
by

�

if there exists a sequence
��� � �� � � � � � �

of states in

�

such that� � � �� , � � �

, and for every
�

,
 ! �! ", � ���$# % � � �# �� �# .

CSC280, Lecture 2 2

The language recognized (or accepted) by

�

, notated as

� � � �
, is the

language over

�

such that

(*) for every string � over

�

, � � � � � � � �

accepts �.
Example: A FA that recognizes the language over

�� � �
consisting of

all the strings with an even number of

�

s and an even number of

s

2q 3q

q1q0
0

0

0

0
1 1 1 1

CSC280, Lecture 2 3

Regular Languages

Let

�

and

�

be two languages. Define:

� Union of

�

and

�

,

��� �

, is

��� � � � �

or � � � �
,

� Concatenation of

�

and

�

,

�	� �

, is

��
 � � � �
and
 � � �

,

� Star of

�

,

��

, is

�� � � �� � � � � � � �

and � � �� � � � � � � �

.

The class of regular languages is the class of languages recognized
by finite automata.

CSC280, Lecture 2 4

Nondeterministic Finite Automata

A nondeterministic finite automaton is a 5-tuple

�� � � � ��� �� � � �
 �

,
where

�

now is a mapping of

� � ��
� to

� � � �

, the power set of

�

, i.e.,
the collection of all subsets of

�

, where

�
� � � � ��� �

.

For each � � �

and each � � �
� , “

� ��� � � �� 	

” states that upon reading
an �,

�

can go from � to any state in

	

.

A string � � ��� � � �� is accepted by
�

if there exists a sequence��� � �� � � � �

�

of states in

�

and a representation
�
�� � �

 of � over�
� such that � � � �� , �
 �

, and for every

�

,

 ! �! �, �$# � � ���# % � �
�

.

CSC280, Lecture 2 5

Example of NFA

An NFA that recognizes the language over

�� �

that consists of all strings� such that

� � � is either a multiple of 2 or a multiple of 3.

0 0

0

ε 0

0

ε

r

r2r1

q2q1

q0

3

CSC280, Lecture 2 6

FA = NFA

Theorem. Every NFA can be converted an equivalent FA.

Proof Let

� � � � � ��� �� �� �
 �

be an NFA. Define a FA

� �

�� � ��� �� � � � � �

by

� � � � � � �

,

� � � � � �� �

,

� �� � �� � � ���
 �� � �

, and

� for each

� � �

and

� � �

, � � �� � �� �
	
 � � � � � � � �� � �

.

Here � � �� � �

is the set of all states that

�

can go to from one of the
states in

�

, upon receiving symbol

�

. So, � over

�

is accepted by

�

if
and only if � takes

�

from the state � � to a subset of

�

containing an
element in

(the set of such subsets is

�

).

CSC280, Lecture 2 7

Regular Expressions

An expression

	

is a regular expression if

	

is

1. � for some � in some alphabet

�

,

2. � ,

3.

�

,

4.

� 	� � 	 � � for some regular expressions

	� and

	 �,
5.

� 	� � 	 � � for some regular expressions

	� and

	 �, or

6.

� 	� � �

for some regular expression

	� .

� � � �� � � � � � �� �� �� � � � � � �� �
,

� � 	� � 	 � �� � � 	� � � � � 	 � � � � � 	� � 	 � �� � � 	� � � � � 	 � � ,

� � � 	� � � �� � � � 	� � � �
CSC280, Lecture 2 8

Finite Automata are equivalent to Regular Expressions

This requires proofs in both directions.

Lemma (REXPR � NFA � FA). Every regular expression describes a
regular language.

Proof For any � � �

,

� � � � is regular;

� �� �
is regular; and

� � � �

is
regular. For

� 	� � 	 � � , � 	� � 	 � � , � 	� � �

, assume for induction that there
are FAs

�� ,

� � such that

�# � ��� � � � �# �� � � 	# �
, for

�� � �

.

Let FA

�# � �� � �

, have initial state � # and final states

. Construct an
NFA with initial state � � and final states

� :
Union,

� � � � � � � : � � has an � -move to � � and to � �;
� �
� �
 �

Concatenation,

� � � � � � � : � � � �� , an � -move from each � �
� to � �,
� �
 �

Star,

� �� � �

: � � � � � , an � -move from each � �
� to � � ,

� �
�

CSC280, Lecture 2 9

Lemma (FA � NFA � REXPR). Every regular language is described
by some regular expression.

Proof (Sketch) We want to get from an FA to a regular expression.

Step 1: Change an FA for any given regular language

�

to an
equivalent NFA with a new start state and a new, unique accepting state,
using � -transitions.

ε
ACCEPT

ε
ε

START

NFA

ε

CHANGE TO

FA

CSC280, Lecture 2 10

Step 2: Combine multiple labels.
(a) For every transition

q q
j

label , ..., label k1
i

in the NFA, change it to

a regular expression, so we
call the resulting automaton
a GENERALIZED NFA (GNFA)

q
i

1label ... labelk q
j

CSC280, Lecture 2 11

(b) For every pair of transitions (while there remain such pairs)

q q
ji

label 1

label 2

in the GNFA, change these to

q q
ji

1label label 2

CSC280, Lecture 2 12

Step 2: Eliminate (“rip out”) successive states of the GNFA (other
than START and ACCEPT), replacing lost 2-step paths by 1-step paths.
I.e., when we eliminate a state ���# 	 , we generally “lose” some local paths
of the form

label3label1

label2

q , q may beq
j

q

q
i

rip

the self−loop may or may not be present

i j

distinct
the same, or

For each such local path,
(a) insert a single arrow labeled like this:

q
i

q
j

label2(label) 3*label1

CSC280, Lecture 2 13

(b) If there was already a transition

q q
ji

label

from �# to ��� , merge the two arrows into

q
j

1label (label)2 * label3q
i

() label

CSC280, Lecture 2 14

Result:

regular expression

START ACCEPT

The regular expression describes

�

, the language recognized by the
original FA. Showing this requires an inductive proof that at each step of
the conversion, the resulting GNFA still accepts exactly the same input
sequences as before. We’ll omit further details.

CSC280, Lecture 2 15

Example of FA � REXPR

A FA that recognizes the language over

�� � �

that consists of all strings� with no “isolated” 1s, i.e., wherever there is a 1, there is another 1
adjacent on its left or right.

q q

q

q

1

1

0 0

1

0

0,1

1

2

3

4

CSC280, Lecture 2 16

Steps 1 and 2:

combined
labelsq q

q

q

1 2

3

4

1

0 0

1

0

1

0 1

q
5

ε

ε

ε

START

ACCEPT

q
0

CSC280, Lecture 2 17

Step 3:
Rip �� : there are 4 local paths to replace

q

q

q

2

3

4

1

0

1

0 1

q
5

ε

ACCEPT

q
0

START

0*

00*

combined labels

*00 1

0 1*

CSC280, Lecture 2 18

Step 3, continued:
Rip � �: there are 4 local paths to replace

q

q

3

4

0 1

q
5

ACCEPT

q
0

START

0*

0 11*

*0 10

1 (00 11)*

combined
labels

00*ε

00*10

CSC280, Lecture 2 19

Step 3, continued:
Rip ��� : there are no local paths through � � , so it just disappears

Rip ��� : there is 1 local path to replace

ACCEPT

q
5

q
0

START

* * * *

0*

(0 11)((00 11) 1) (00)ε

CSC280, Lecture 2 20

Step 3, concluded:
Combine labels:

ACCEPT

q
5

0* (0 11)((00 11) 1) (00)* * * *ε
q

0

START

Not as simple as it might be:

� � � � � �

CSC280, Lecture 2 21

