

Lecture 2: Regular Languages
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Finite Automata


A finite automaton is a 5-tuple


� ��� ��� �� �	� � 
 �


, where


1.


�


is a finite set called the states,


2.


�


is a finite set called the alphabet,


3.


�� � � � � � �


is the transition function,


4. �� � �


is the initial state, and


5.



� �


is the set of accepting states.


Let


��� � ��� ��� �� �� � 
 �


be an FA. A string � � ���� � � ��� is accepted
by


�


if there exists a sequence
��� � �� � � � � � �


of states in


�


such that� � � �� , � � � 



, and for every
�


,
 ! �! ", � ���$# % � � �# �� �# .
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The language recognized (or accepted) by


�


, notated as


� � � �
, is the


language over


�


such that


(*) for every string � over


�


, � � � � � � � �


accepts �.
Example: A FA that recognizes the language over


�� �  �
consisting of


all the strings with an even number of


�


s and an even number of


 


s


2q 3q


q1q0
0


0


0


0
1 1 1 1
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Regular Languages


Let


�


and


�


be two languages. Define:


� Union of


�


and


�


,


��� �


, is


��� � � � �


or � � � �
,


� Concatenation of


�


and


�


,


�	� �


, is


�� 
 � � � �
and 
 � � �


,


� Star of


�


,


��


, is


�� � � �� � � �  � � � �


and � � �� � � � �  � � �


.


The class of regular languages is the class of languages recognized
by finite automata.
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Nondeterministic Finite Automata


A nondeterministic finite automaton is a 5-tuple


�� � � � ��� �� � � � 
 �


,
where


�


now is a mapping of


� � ��
� to


� � � �


, the power set of


�


, i.e.,
the collection of all subsets of


�


, where


�
� � � � ��� �


.


For each � � �


and each � � �
� , “


� ��� � � �� 	


” states that upon reading
an �,


�


can go from � to any state in


	


.


A string � � ��� � � �� is accepted by
�


if there exists a sequence��� � �� � � � � 

�


of states in


�


and a representation 
� 
�� � � 
 
 of � over�
� such that � � � �� , � 
 � 



, and for every


�


,


 ! �! �, �$# � � ���# % � � 
# �


.


CSC280, Lecture 2 5







Example of NFA


An NFA that recognizes the language over


�� �


that consists of all strings� such that


� � � is either a multiple of 2 or a multiple of 3.


0 0


0


ε 0


0


ε


r


r2r1


q2q1


q0


3
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FA = NFA


Theorem. Every NFA can be converted an equivalent FA.


Proof Let


� � � � � ��� �� �� � 
 �


be an NFA. Define a FA


� �


�� � ��� �� � � � � �


by


� � � � � � �


,


� � � � � �� �


,


� �� � �� � � ��� 
 �� � �


, and


� for each


� � �


and


� � �


, � � �� � �� �
	 
 � � � � � � � �� � �


.


Here � � �� � �


is the set of all states that


�


can go to from one of the
states in


�


, upon receiving symbol


�


. So, � over


�


is accepted by


�


if
and only if � takes


�


from the state � � to a subset of


�


containing an
element in






(the set of such subsets is


�


).
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Regular Expressions


An expression


	


is a regular expression if


	


is


1. � for some � in some alphabet


�


,


2. � ,


3.


�


,


4.


� 	� � 	 � � for some regular expressions


	� and


	 �,
5.


� 	� � 	 � � for some regular expressions


	� and


	 �, or


6.


� 	� � �


for some regular expression


	� .


� � � �� � � � � � �� �� �� � � � � � �� �
,


� � 	� � 	 � �� � � 	� � � � � 	 � � � � � 	� � 	 � �� � � 	� � � � � 	 � � ,


� � � 	� � � �� � � � 	� � � �
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Finite Automata are equivalent to Regular Expressions


This requires proofs in both directions.


Lemma (REXPR � NFA � FA). Every regular expression describes a
regular language.


Proof For any � � �


,


� � � � is regular;


� �� �
is regular; and


� � � �


is
regular. For


� 	� � 	 � � , � 	� � 	 � � , � 	� � �


, assume for induction that there
are FAs


�� ,


� � such that


�# � ��� � � � �# �� � � 	# �
, for


��  � �


.


Let FA


�# � ��  � �


, have initial state � # and final states



# . Construct an
NFA with initial state � � and final states



� :
Union,


� � � � � � � : � � has an � -move to � � and to � �; 
� � 
� � 
 �


Concatenation,


� � � � � � � : � � � �� , an � -move from each � � 
� to � �,
� � 
 �


Star,


� �� � �


: � � � � � , an � -move from each � � 
� to � � ,



� � 
�


CSC280, Lecture 2 9







Lemma (FA � NFA � REXPR). Every regular language is described
by some regular expression.


Proof (Sketch) We want to get from an FA to a regular expression.


Step 1: Change an FA for any given regular language


�


to an
equivalent NFA with a new start state and a new, unique accepting state,
using � -transitions.


ε
ACCEPT


ε
ε


START


NFA


ε


CHANGE TO


FA
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Step 2: Combine multiple labels.
(a) For every transition


q q
j


label  , ..., label k1
i


in the NFA, change it to


a regular expression, so we
call the resulting automaton
a GENERALIZED NFA (GNFA)


q
i


1label     ...    labelk q
j
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(b) For every pair of transitions (while there remain such pairs)


q q
ji


label 1


label 2


in the GNFA, change these to


q q
ji


1label label 2
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Step 2: Eliminate (“rip out”) successive states of the GNFA (other
than START and ACCEPT), replacing lost 2-step paths by 1-step paths.
I.e., when we eliminate a state ���# 	 , we generally “lose” some local paths
of the form


label3label1


label2


q , q  may beq
j


q


q
i


rip


the self−loop may or may not be present


i j


distinct
the same, or


For each such local path,
(a) insert a single arrow labeled like this:


q
i


q
j


label2(label  ) 3*label1
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(b) If there was already a transition


q q
ji


label


from �# to ��� , merge the two arrows into


q
j


1label (label  )2 * label3q
i


( ) label
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Result:


regular expression 


START ACCEPT


The regular expression describes


�


, the language recognized by the
original FA. Showing this requires an inductive proof that at each step of
the conversion, the resulting GNFA still accepts exactly the same input
sequences as before. We’ll omit further details.
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Example of FA � REXPR


A FA that recognizes the language over


�� �  �


that consists of all strings� with no “isolated” 1s, i.e., wherever there is a 1, there is another 1
adjacent on its left or right.


q q


q


q


1


1


0 0


1


0


0,1


1


2


3


4
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Steps 1 and 2:


combined
labelsq q


q


q


1 2


3


4


1


0 0


1


0


1


0     1


q
5


ε


ε


ε


START


ACCEPT


q
0
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Step 3:
Rip �� : there are 4 local paths to replace


q


q


q


2


3


4


1


0


1


0     1


q
5


ε


ACCEPT


q
0


START


0*


00*


combined labels


*00 1


0 1*
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Step 3, continued:
Rip � �: there are 4 local paths to replace


q


q


3


4


0     1


q
5


ACCEPT


q
0


START


0*


0 11*


*0 10


1    (00  11)*


combined
labels


00*ε


00*10
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Step 3, continued:
Rip ��� : there are no local paths through � � , so it just disappears


Rip ��� : there is 1 local path to replace


ACCEPT


q
5


q
0


START


* * * *


0*


(0 11)((00  11)    1)  (     00  )ε
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Step 3, concluded:
Combine labels:


ACCEPT


q
5


0* (0 11)((00  11)    1)  (     00  )* * * *ε
q


0


START


Not as simple as it might be:


�    � � � � �
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