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Context-Free Languages

A context-free grammar is a 4-tuple G = (V, X, R, S). Here

1. V isthe set of variables (or nonterminals),
2. Y is the set of terminals with V N X = 0,

3. R is the set of rules, each of which is of the form
A — w,

where A € V and w is a string over V U X; and

4. S'is the start symbol.
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Derivation

The process of generating a string. Start with v« = S, repeat the
following until « Is variable-free:

Find a variable A in u, find a rule in R of the form A — w, replace
the A by w.

Use A = u to denote that v is derived from A.

A parse tree (or derivation tree) is a tree that depicts the process of
derivation.
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Example: The strings over ¥ = {a, b} consisting of an equal number
of a's and b’s

V = {S} and the derivation rules are S — ¢ | aSbS | bSaS.

abab IS derived as follows:

S = aSbS = abSaSbS = abSabS = ababS = abab.
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Leftmost Derivation & Ambiguity

A leftmost derivation is the derivation in which each production rule is
applied to the leftmost variable. The following derivation of abab

S = aSbS = abSaSbS = abaSbS = abab$S = abab
IS a leftmost derivation (giving the same parse tree as before) while
S = aSbsS = aSbaSbsS = aSbab$S = aSbab = abab

IS not (and the parse tree is different as well).

A context-free grammar is unambiguous if it has a unique leftmost
derivation for every word (sentence) it generates.

There is an inherently ambiguous context-free language.
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Chomsky Normal Form

A context-free grammar G = (V, X, R, S) isin Chomsky normal form if
each rule in R is either of the form A — BC for some B,C € V — {S}
or of the form A — a with a € X, except that S — € Is permitted.

Theorem. Each context-free language L is generated by a Chomsky
normal form grammar.
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Proof of the Theorem

Step 1 Add new start symbol S with a unique production rule Sy — S.
If S — ¢ € Rthen add Sy — e.

Step 2 Elimination of e rules
While there is a variable A # Sy suchthat A - e € R

e for each rule r of the form B — y with an A in y, replace r with the
collection of all rules of the form B — ¢’ such that ¢’ is constructed
from y by eliminating some (possibly none) of the occurrences of
A;

e eliminate A — e.
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Proof of the Theorem (cont’d)

Step 3 Elimination of Unit Rules
While there is a unitrule A — B with B € V,

e eliminate the rule and

o If B+# A, then for eachrule B — w,add A — w
(provided that A — w wasn’t previously eliminated)
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Proof of the Theorem (cont’d)

Step 4 Normalization
For each terminal d
e add a new nonterminal D,
e add anewrule D — d, and
e for each rule A — wu,|u| > 1, in which d occurs, replace each
occurrence of d with a D.

Foreachrule A — wy ... w,,, m > 3,

e add a new variable X and

e replace the rule with A — w; X and X — wsy - - - wy,.
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Proof of the Theorem (concluded)

It's pretty clear the transformation “works”, but strictly, we should show
this.

In particular, we can argue that

e the iterations in steps 2, 3 and 4 terminate (which is not completely
obvious for step 3...); and

e each transformation step preserves the language generated.
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Example

V ={5},% ={a,b}, and R consists of § — ¢ | aSbS | bSaS
Step 1 Add Sy — S | e.
Step 2 Eliminate S — €. The rules are
So — Se,
S — ab|abS|aSbS |aSh |
ba | baS | bSa$s | bSa.

STEP 3 Eliminate Sy — S and add

So — ab|abS|aSbS|aSh |
ba | baS | bSaS | bSa
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Example (concluded)

STEP 4 The rules are

So—¢€, A—a B —D,

So— AB | AX; | AXs | AX3 | BA| BY: | BY; | BY3,
S— AB| AX; | AXs | AX3 | BA| BY; | BY; | BY3,
X1 — BS, X5 — S5X4,

X3 —SB, X4,— BS,

Y1 — AS, Y; — SY,,

Y; — SA, Y, — AS.
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