
Context-Free Languages

CSC280, Lecture 4 1

Context-Free Languages

A context-free grammar is a 4-tuple G = (V, Σ, R, S). Here

1. V is the set of variables (or nonterminals),

2. Σ is the set of terminals with V ∩ Σ = ∅,

3. R is the set of rules, each of which is of the form

A → w,

where A ∈ V and w is a string over V ∪ Σ; and

4. S is the start symbol.

CSC280, Lecture 4 2

Derivation

The process of generating a string. Start with u = S, repeat the
following until u is variable-free:

Find a variable A in u, find a rule in R of the form A → w, replace
the A by w.

Use A ⇒ u to denote that u is derived from A.

A parse tree (or derivation tree) is a tree that depicts the process of
derivation.

CSC280, Lecture 4 3

Example: The strings over Σ = {a, b} consisting of an equal number
of a’s and b’s

V = {S} and the derivation rules are S → ε | aSbS | bSaS.

abab is derived as follows:

S ⇒ aSbS ⇒ abSaSbS ⇒ abSabS ⇒ ababS ⇒ abab.

S

ab S S

ε ε

a Sb

ε

S

CSC280, Lecture 4 4

Leftmost Derivation & Ambiguity

A leftmost derivation is the derivation in which each production rule is
applied to the leftmost variable. The following derivation of abab

S ⇒ aSbS ⇒ abSaSbS ⇒ abaSbS ⇒ ababS ⇒ abab

is a leftmost derivation (giving the same parse tree as before) while

S ⇒ aSbS ⇒ aSbaSbS ⇒ aSbabS ⇒ aSbab ⇒ abab

is not (and the parse tree is different as well).

A context-free grammar is unambiguous if it has a unique leftmost
derivation for every word (sentence) it generates.

There is an inherently ambiguous context-free language.

CSC280, Lecture 4 5

Chomsky Normal Form

A context-free grammar G = (V,Σ, R, S) is in Chomsky normal form if
each rule in R is either of the form A → BC for some B,C ∈ V − {S}
or of the form A → a with a ∈ Σ, except that S → ε is permitted.

Theorem. Each context-free language L is generated by a Chomsky
normal form grammar.

CSC280, Lecture 4 6

Proof of the Theorem

Step 1 Add new start symbol S0 with a unique production rule S0 → S.
If S → ε ∈ R then add S0 → ε.

Step 2 Elimination of ε rules

While there is a variable A 6= S0 such that A → ε ∈ R

• for each rule r of the form B → y with an A in y, replace r with the

collection of all rules of the form B → y′ such that y′ is constructed

from y by eliminating some (possibly none) of the occurrences of

A;

• eliminate A → ε.

CSC280, Lecture 4 7

Proof of the Theorem (cont’d)

Step 3 Elimination of Unit Rules

While there is a unit rule A → B with B ∈ V ,

• eliminate the rule and

• if B 6= A, then for each rule B → w, add A → w

(provided that A → w wasn’t previously eliminated)

CSC280, Lecture 4 8

Proof of the Theorem (cont’d)

Step 4 Normalization

For each terminal d

• add a new nonterminal D,

• add a new rule D → d, and

• for each rule A → u, |u| > 1, in which d occurs, replace each

occurrence of d with a D.

For each rule A → w1 . . . wm, m ≥ 3,

• add a new variable X and

• replace the rule with A → w1X and X → w2 · · · wm.

CSC280, Lecture 4 9

Proof of the Theorem (concluded)

It’s pretty clear the transformation “works”, but strictly, we should show
this.

In particular, we can argue that

• the iterations in steps 2, 3 and 4 terminate (which is not completely

obvious for step 3...); and

• each transformation step preserves the language generated.

CSC280, Lecture 4 10

Example

V = {S}, Σ = {a, b}, and R consists of S → ε | aSbS | bSaS

Step 1 Add S0 → S | ε.

Step 2 Eliminate S → ε. The rules are

S0 → S | ε,

S → ab | abS | aSbS | aSb |

ba | baS | bSaS | bSa.

STEP 3 Eliminate S0 → S and add

S0 → ab | abS | aSbS | aSb |

ba | baS | bSaS | bSa

CSC280, Lecture 4 11

Example (concluded)

STEP 4 The rules are

S0 → ε, A → a, B → b,

S0 → AB | AX1 | AX2 | AX3 | BA | BY1 | BY2 | BY3,

S → AB | AX1 | AX2 | AX3 | BA | BY1 | BY2 | BY3,

X1 → BS, X2 → SX4,

X3 → SB, X4 → BS,

Y1 → AS, Y2 → SY4,

Y3 → SA, Y4 → AS.

CSC280, Lecture 4 12

