
Pushdown Automata

CS280, Lecture 5 1

Pushdown Automata

A pushdown automaton is a 6-tuple (Q, Σ, Γ, δ, q0, F) where Q,Σ, Γ, F

are finite sets, and

1. Q is the set of states,

2. Σ is the input alphabet,

3. Γ is the stack alphabet,

4. δ : Q × Σε × Γε → P(Q × Γε) is the transition function,

5. q0 ∈ Q is the start state, and

6. F ⊆ Q is the set of accept states.

CS280, Lecture 5 2

Pushdown Automata (cont’d)

At each computational step, a PDA does the following:

1. nondeterministically decides whether to read the next input
symbol and the current stack symbol; for input symbol wi and

stack symbol sj the choices are (wi, sj), (ε, sj), (wi, ε), (ε, ε);

(if the input or stack are empty, there are fewer than 4 choices);

2. if the choice is (u, v), then if u 6= ε it reads (moves past) u and if

v 6= ε it pops v from the stack; and

3. it nondeterministically selects the next state and a symbol to be
put on the stack according to the transition function.

It halts when either (i) there is no next move, or (ii) no input symbols
are left and the current state is an accept state.

CS280, Lecture 5 3

Pushdown Automata (cont’d)

M = (Q, Σ, Γ, δ, q0, F) accepts a word w ∈ Σ∗ if w can be represented

as w1 · · ·wm with w1, . . . , wm ∈ Σε and there exist r0, . . . , rm ∈ Q and

s0, . . . , sm ∈ Γ∗ satisfying the following conditions:

1. r0 = q0 and s0 = ε.

2. For every i, 1 ≤ i ≤ m, (ri, b) ∈ δ(ri−1, wi, a), where si−1 = at and

si = bt for some a, b ∈ Γε and t ∈ Γ∗.

3. rm ∈ F .

Here the stack is read from top to bottom (or left to right).

CS280, Lecture 5 4

PDA, Example 1

L = {0n1n | n ≥ 0}.

Design Idea

• Use a special symbol $ to mark the bottom of the stack.
(Using ε wouldn’t work because ε is always “there”.)

• First put onto the stack all the 0s preceding the 1s.

• Then try to match the stacked 0s with the 1s.

• The input string is in L if, and only if, the bottom $ is the top
symbol when all the input symbols have been read.

CS280, Lecture 5 5

Example 1 (cont’d)

Γ = {0, 1, $}, Q = {q1, q2, q3, q4}, F = {q1, q4}, q1 is the initial state

We use q1 to place the $ on the stack, q2 to read 0s and push them onto
the stack (and react to the first 1), and q3 to read 1s and pop 0s from
the stack (and react to the $ by going to accept state q4). As a diagram:

4 q3

q2

q

1,0

1

ε

q ε,ε

ε

$

0,

$

ε 0

ε,

ε1,0

CS280, Lecture 5 6

Example 1 (cont’d)

As a transition table (where blank means empty set):

Input: 0 1 ε

Stack: 0 $ ε 0 $ ε 0 $ ε

q1 {(q2, $)}
q2 {(q2, 0)} {(q3, ε)}
q3 {(q3, ε)} {(q4, ε)}

Let (q, u, v), q ∈ Q,u ∈ Σ∗, v ∈ Γ∗ denote the configuration in which the
state is q, the remaining input is u, and the stack word is v.

000111 is accepted by a path: (q1, 000111, ε) ⇒ (q2, 000111, $) ⇒
(q2, 00111, 0$) ⇒ (q2, 0111, 00$) ⇒ (q2, 111, 000$) ⇒ (q3, 11, 00$) ⇒
(q3, 1, 0$) ⇒ (q3, ε, $) ⇒ (q4, ε, ε).

CS280, Lecture 5 7

PDA, Example 2

L = {u ∈ {0, 1}∗ | u has an equal number of 0s and 1s }.

Design Idea

• We note that for any initial portion of a binary string, if that portion

is “unbalanced”, there’s either an excess of 0s or an excess of 1s.

The idea is to always save this excess on the stack. The stack will

never have both 0s and 1s on it.

• So when an input symbol is processed that is the same as the top

stack symbol (or the top stack sybol is the bottom-of-stack marker),

this symbol adds to the excess and should be pushed onto the

stack.

CS280, Lecture 5 8

Note: Pushing an excess symbol onto the stack takes two steps,

since “looking at” the top of the stack consumes the top symbol,

and we then have to put it back on.

• If an input symbol is processed that is complementary to the top

stack symbol, these two symbols “cancel”, i.e., we should pop the

stack.

• If we run out of input symbols with the stack empty, we clearly have

a string with an equal number of 0s and 1s.

CS280, Lecture 5 9

PDA, Example 2 (cont’d)

q1

(0,1)

0

(1,0)
ε

4q
(ε, $)

ε

q

q2

(ε,ε) 0
(0,0)

$
0

ε

q3

(ε,ε) 1

(0,$)

(ε,ε)

(1,$)
(1,1)

$
1

$

Example: (q0, 011100, ε) ⇒ (q1, 011100, $) ⇒ (q2, 11100, $) ⇒
(q1, 11100, 0$) ⇒ (q1, 1100, $) ⇒ (q3, 100, $) ⇒ (q1, 100, 1$) ⇒
(q3, 00, 1$) ⇒ (q1, 00, 11$) ⇒ (q1, 0, 1$) ⇒ (q1, ε, $) ⇒ (q4, ε, ε)

CS280, Lecture 5 10

PDA, Example 2 (concluded)

L = {u ∈ {0, 1}∗ | u has an equal number of 0s and 1s }.
Q = {q0, q1, q2, q3, q4}, F = {q4}, Γ = {0, 1, $}, q0 is the initial state

0 1 ε

0 1 $ 0 1 $ ε $
q0 (q1, $)
q1 (q2, 0) (q1, ε) (q2, $) (q1, ε) (q3, 1) (q3, $) (q4, ε)
q2 (q1, 0)
q3 (q1, 1)

Here { and } are omitted. State q0 is used to place $ on the stack, q1

is used to pop stack symbols “matching” a complementary input symbol
(and to recognize when we’re done), q2 is used to push unmatched 0s
onto the stack, and q3 to push unmatched 1’s onto the stack.

CS280, Lecture 5 11

PDAs Recognize CFLs

Theorem. Each context-free language is recognized by a PDA.

Proof Let L be produced by a Chomsky normal form grammar G =
(V,Σ, R, S).

IDEA Construct a PDA that performs leftmost derivations. A step of
a derivation using A → BC is implemented by popping the left-hand
side and pushing the right-hand side of the rule onto the stack. A
step using A → a is implemented by popping the left-hand side and
comparing the right-hand side to the input symbol (expending that
symbol).

CS280, Lecture 5 12

PDA Recognize CFLs (cont’d)

N ’s input alphabet = Σ, stack alphabet = V ∪ {$}. It has 1 accept state.

N pushes a $ and then an S on the stack and repeats the following until

it halts:

1. N pops a stack symbol A. If A = $, N enters the accept state
and halts.

2. N nondeterministically chooses a production rule A → w.
− If w = ε, N takes no action (back to step 1).

− If w = BC for some variables B,C, then N pushes a C

then a B onto the stack.

− If w = a, N reads the next input symbol b; if a 6= b then N

halts.

CS280, Lecture 5 13

εa, ε

ε,ε

ε,ε

ε,ε

ε,

ε, εε, ε

$

S
A C

B

A$

εε,S

(if A a in G)

(if A BC in G)

(if S in G)ε

CS280, Lecture 5 14

CFLs Capture PDA

Theorem. Every language recognized by PDA is context free.

Proof Let L be recognized by a PDA M . We can assume

(*) M has a unique final state and, when it enters the state, the
stack is empty.

(**) In a single move M either pops or pushes, but not both.

Idea for ensuring (*): Modify M to create a new PDA N , which has

• a new stack symbol ⊥ (to mark bottom of stack),

• a new initial state I (for putting ⊥ on the stack),

• a clean-up state C (for clearing the stack),

• a new (unique) accepting state A.

CS280, Lecture 5 15

CFLs Capture PDA (cont’d)

• The only permissible action in I is to put one ⊥ on the stack
without reading an input symbol and go to the old initial state.

• In each state in Q the action of N is the same except that there is
an (ε, ε)-transition from each former accepting state to C.

• The goal in state C is to remove stack symbols one after another
and to enter A upon observing a ⊥.

CS280, Lecture 5 16

CFLs Capture PDA (cont’d)

As to (**), divide each state involving push and pop into two states,
one for push only and the other for pop only:

(r, c) ∈ δ(q, a, b) becomes a pair of moves:
(r′, ε) in δ(q, a, b) followed by (r, c) in δ(r′, ε, ε)

q
a,b

becomes

q

r

rr’
a,b c

c

ε ε,ε

CS280, Lecture 5 17

CFLs Capture PDA (cont’d)

Now suppose M satisfies (*) and (**).

Construct a CFG (V,Σ, P, S): V = {Apq | p, q ∈ Q} and S = Aq0f ,
where q0 is the initial state of M and f is the unique final state of M .

Key idea: For any states p, q, Apq is a variable generating the strings
that can take M from p to q while “preserving the stack”. Then by
taking p as the start state and q as the accept state, we have a variable
that generates precisely the strings accepted by M , and thus can
serve as start symbol.

CS280, Lecture 5 18

CFLs Capture PDA (cont’d)

More precisely, the variable Apq corresponds to the set of all strings

expended by M under the following conditions:

• M starts with p and ends with state q.

• For some k ≥ 0, the stack height is:

− always at least k and

− precisely k at the start as well as at the end.

CS280, Lecture 5 19

Production rules:

• For every p ∈ Q, App → ε.

• For every p, q, r ∈ Q, Apq → AprArq.

• For every p, q, r, s ∈ Q, b, c ∈ Σε, and d ∈ Γε,

if (r, d) ∈ δ(p, b, ε) and (q, ε) ∈ δ(s, c, d), then Apq → bArsc.

r qp p qr

A

A A

x y

pq

pr rq

x y
s

b, d c,dε ε

push pop

x

x

A

A

pq

rs

b c

stack−preserving
 transitions

CS280, Lecture 5 20

Regular Languages ⊂ CFLs

First proof Any FA can be viewed as a PDA that never pops or pushes
the stack.

Second proof Build a CFG for a FA, where

for p q we use P aQ
a

for r we use R ε

CS280, Lecture 5 21

Properties of Context-Free Languages

Theorem. The context-free languages are closed under union,
concatenation, and star.

Proof Let S1 and S2 be the start symbols of two CFGs. Let S be the
new start symbol of the new CFG we are creating.

Adding S → S1 | S2 works for union.

Adding S → S1S2 works for concatenation.

Adding S → ε |SS1 works for star.

This also shows how regular expressions can be converted to
equivalent CFGs, providing a 3rd proof that regular languages are CFLs.

CS280, Lecture 5 22

