
Computability Theory

CS280, Lecture 7 1

The Birth of Turing Machines

At the end of the 19th century, Gottlob Frege conjectured that
mathematics could be built from fundamental logic.

In 1900 David Hilbert, accepting this view, asked whether there is a
process whereby it could be determined in a finite number of operations
whether a given polynomial has an integral root.

In 1931 Kurt Gödel showed that every logical system general enough to
deal with arithmetic contains statements that cannot be proven true or
false.

What classes of mathematical problems lack effective solutions?

CS280, Lecture 7 2

The Birth (cont’d)

In 1936 several papers appeared that shed light on that question:
Church’s Lambda calculus, Kleene’s (general) recursive functions,
Turing’s system, now called Turing machines, and Post’s production
systems, similar to Turing machines.

All these systems were proved equivalent. Church and Turing then
proposed equivalent theses, viz., “Church’s Thesis,”, “Turing’s
Thesis,”, or the “Church-Turing Thesis,” which states that the classes
of mathematical problems that are effectively solvable in the intuitive
sense are those that are effectively solvable in one of (and thus, any of)
the above computational models.

The thesis also suggests that the notion of effective computability is
model-independent.

CS280, Lecture 7 3

Turing Machines

A Turing machine is a step-wise computing device, which consists of

1. an infinitely long tape that is divided into tape squares (or tape
cells),

2. a head that scans (is positioned at) a particular tape square at each

time step, and

3. a finite control that maintains the current state.

CS280, Lecture 7 4

Turing Machines (cont’d)

Each combination of a state and a scanned tape symbol determines
the next state, the symbol written on the scanned square, and the
move (L or R) of the tape head.

tape

finite control2q

a b a b b c

head

CS280, Lecture 7 5

Turing Machines (cont’d)

A Turing machine is a 7-tuple

� ��� ��� �� �� �
	 � ��� �� �� ��� � � � � � , where

��� �� �

are finite sets,

1.

�

is a set of states,

2.

�

is the input alphabet,

3.

�

is the tape alphabet, which includes
�

(the special blank symbol),

and where

� � � � � � �

,

4.

��� � � � � � � � � �� � � �

is the transition function,

5. �	 is the initial state,

6. ��� ! " # is the accept state, and

7. ��$! %! # is the reject state

CS280, Lecture 7 6

Computation of a Turing Machine

In one step, a Turing machine:

1. Reads the symbol written on the tape square on which the
head is located and, according to the transition function

2. Makes one move: It

(a) updates its state,

(b) writes on the current tape square, and

(c) moves the head by one square either to the left or to
the right,

where the head stays at the same position if it is at the left end of

the tape and a left move is specified by

�

CS280, Lecture 7 7

Computation of a Turing Machine (cont’d)

At the beginning

1. the tape contains the input on the leftmost squares,

2. the rest of the tape is filled with blank symbols,

3. the head is at the leftmost cell, and

4. the state is �	 .

The Turing machine halts when it enters one of � � ! " # and � $! %! #, and in
these states it accepts and rejects, respectively. (We could make this
more explicit by defining the domain of

�

to be

� � � � � � ! " # � ��$! %! # � � � �

.)

CS280, Lecture 7 8

Configurations

A configuration of a Turing machine consists of the contents of its tape,
the head position, and the state. If the tape contents are ��� � � � � � � �

�

� � � , the head is located on the

�

th square, and the state is �, then we
write

�� � � � �� � �
� �� � � � � �

to denote the configuration. The segment of blanks filling the tape is
omitted but at least one symbol (possibly

�
) is required after the state.

Thus a configuration is a word in

� � � � � � � � � � � �

.

q2

a b a b b

In the above, the configuration is 	
 	

 ��� �

.

CS280, Lecture 7 9

Configurations (cont’d)

The action of a TM can be viewed as rewriting of the configuration.

A configuration

�
� yields

�
� if the Turing machine can go from

�
� to

�
�

in a single step. Let �� �� � � �

and �� � � � �

:

� � � ��� � � yields � � � � � � if

� � � � � � � 	
� � � � �� � �

.

� �
� � � yields � � � � if

� � �
� � � � 	
� � � � �� � �

.

� � �
� � � yields � � � � � �

if

� � � � � � � 	
� � � � �� � �

, where � �

is � if

� � � �

and

�

if

� � �

	 �

.

An accepting configuration (A rejecting configuration) is one in
which the state is � � ! " # (�$! %! #). Accepting configuration and rejecting
configurations are halting configurations.

CS280, Lecture 7 10

The Languages of Turing Machines

A Turing machine

�

accepts (rejects) a string � if it eventually enters
an accepting (a rejecting) state for input �.

A Turing machine

�

recognizes a language

�

, if for every input �,

�

on � accepts if and only if � � � .

A Turing machine

�

decides a language
�

, if

�

recognizes

�

and
halts on all inputs.

A language is Turing-recognizable (or recursively enumerable) if
there is a Turing machine that recognizes it.

A language is Turing-decidable (or simply decidable) if there is a
Turing machine that decides it.

CS280, Lecture 7 11

Example

A TM for recognizing

��� �� � � � � �� � � � �
1

x R

R

x,L

r1

r

0q

A2

R

x R

R

x,L

x,R

0,1

q

R

x,R

0,1 R q3

1
R

R

L

0,1,x L
All unspecified transitions

go to a reject state

x R
0,1 L

0

#

0
x

q1

p1

p2

q2

CS280, Lecture 7 12

Multitape TMs & Nondeterministic TMs

A multitape Turing machine is a Turing machine with additional tapes
where each tape is accessible individually, with the input on the first
tape, and with the others blank at the beginning.

For a

�

-tape Turing machine, the transition function
�

is a mapping from� � � �

to

� � � � � �� � � � �

.

A nondeterministic Turing machine is one in which the transition is
mapping to the power set of

� � � � �� � � �
.

A nondeterministic Turing machine accepts an input if it enters an
accepting state for some computation path.

CS280, Lecture 7 13

Equivalence Between Single Tape TMs and Multitape TMs

Theorem. Every multitape Turing machine has an equivalent single
tape Turing machine.

Proof From a

�

-tape TM

�

build a single tape simulator

�

.

For each � � �

, let

�� be a new symbol to signify that a head is located
on the symbol. Then

�

concatenates the contents of

�

’s tapes,
with a new symbol

�

as a delimiter. The tape configuration of

�

in
which the tape contents are �� � � � � � � � � � � � � �� � � � � � ��� and the head
positions are �� � � � � �

is encoded as:� �� � � � � � ��� � �

���� �� �� � � � � � � �
�
	 	 	 � �� � � � � � � � � �

�� � � � �� � � � � � ���

�

�

memorizes

�

’s state using its own state.

CS280, Lecture 7 14

Proof (cont’d)

On input � 	 � � � � � � � :

1. Convert � into its initial form:

� �� � � � � � � � � � �

�	 	 	 � �� � �� �
	 	 	 � �� �
.

2. While

�

has not halted, repeat:

(a) Make a sweeping scan on the tape to find the symbols
scanned by the heads of

�
.

(b) Determine the next move of

�

and modify the
encoding accordingly. Insert symbols if necessary.

3. Accept or reject accordingly.

CS280, Lecture 7 15

Equivalence Between NTMs and TMs

Theorem. Every nondeterministic Turing machine has an equivalent
deterministic Turing machine.

Proof From an NTM

�

construct a three-tape simulator

�

. Let

�

be
a constant such that each transition has at most

�

possible values.
Let

��� 	

� � � �� � � � � � �

. Use a word in

� �
� on Tape 3 to encode a

nondeterministic path, where for each

� � �
, if the

�

th symbol of the
word is

�

, this signifies that for the

�

th move of

�

, the

�

th element among
the available choices (if any) is selected.

The word is invalid if too few choices are available.

CS280, Lecture 7 16

Proof (cont’d)

Use Tape 1 to keep the input, Tape 2 to simulate the tape of

�

, and
Tape 3 to keep an encoding of a computation path.

Define the lexicographic order of paths:

�� � � � � � ��� � �� � � � � � � � � � �� � �

if and only if either � � �

or � 	 �

and
there exists some

�

,

� � � � �, such that �� 	 �� � � � � � � � � � 	 �� � � , and

� � � �� .

E.g., for

� 	 �

, the possible computation paths in lexicographic order
are

� � �� �� � � � � �� � �� � � � � �� � �� � � � � �� � �� � � � � � � �� � � �

CS280, Lecture 7 17

An algorithm for

�

On input � , write the word

� �

on Tape 3, then repeat:

1. Copy the input onto Tape 2.

2. Try to simulate

�

on � using the word on Tape 3 as the path. If

successful and if

�

has accepted, then accept and halt.

3. Modify the path to the next smallest path by incrementing it.

4. Erase Tape 2.

Corollary. A language is Turing-recognizable if and only if it is
recognized by a multitape TM.

Corollary. A language is Turing-recognizable if and only if it is
recognized by an NTM.

CS280, Lecture 7 18

Enumerators

An enumerator of a language

�

is a TM with a special output tape
such that the machine writes on the output tape all the members of

�

with a special symbol

�

as a delimiter.

Theorem. A language is Turing-recognizable if and only if it has an
enumerator.

Proof The “if” part: Simulate the enumerator, and accept if the input
has been output.

The “only if” part: Simulate a recognizer

�

. For

� 	 � � �� � � � , for each

� of lexicographic order of at most
�

, simulate

�

on � for

�

steps and
output � if

�

accepts � in
�

steps.

CS280, Lecture 7 19

