
Decidability

CS280, Lecture 8 1

Decidable Problems About Regular Languages

The Acceptance Problem for DFA

Define

��� � � � �� �

	 � � �

is a DFA that accepts input string � �.

Here we assume a fixed encoding scheme for

�

and �.

Theorem.

��� � � is decidable.

Proof A Turing machine can, given an input �, try to decode � into
a DFA

�

and a string �. If the decoding is successful then it can test
whether

�

accepts � by simulating
�

on �.

CS280, Lecture 8 2

The Acceptance Problem for NFA

Define

��� � � � �� �

	 � � �

is an NFA that accepts input string � �.

Theorem.

��� � � is decidable.

Proof Given an input �, try to decode � into an NFA

�

and a string �.

If “successful” then:

1. Convert

�

to a DFA

�

.

2. Run the machine for

� � � � on

� �
	 � � . If the machine accepts, then

accept; otherwise reject.

(Or we could use a 3-tape TM, as in simulating a NTM.)

CS280, Lecture 8 3

The Acceptance Problem for Regular Exp.

Define

��� �� � �� �
	 � � �

is a regular expression that produces � �.

Theorem.

��� � � is decidable.

Proof Given an input �, try to decode � into a regular expression

�

and a string �. If “successful” then:

1. Convert

�

to a DFA

�

.

2. Run the machine for

� � � � on

� �
	 � � . If the machine accepts, then

accept; otherwise reject.

CS280, Lecture 8 4

The Emptiness Problem for DFA

Define

�� � � � �� � � �

is a DFA that accepts no string

�

.

Theorem.

�� � � is decidable.

Proof Given an input �, try to decode � as a DFA

�

. If “successful”

then:

1. Mark the start state of

�

.

2. Repeat until no new states are marked:

� Mark any unmarked state that has a transition from a
marked state

3. Accept if no final state is marked; reject otherwise.

CS280, Lecture 8 5

The Equivalence Problem for DFA

Define

� � � � � � �� �
	

� � �

and

�

are DFA that accept the same
language

�

.

Theorem.

� � � � � is decidable.

Proof Given a string �, try to decode � into a pair of DFAs

�

and�

. If “successful” then construct a DFA

�

that accepts the symmetric
difference of

� � � �

and

� � � �

,

� �

,
and test the emptiness of

� � � �

.

L(A) L(B)

CS280, Lecture 8 6

The Acceptance Problem for CFG

Define

��� � � � �� �
	 � � �

is a CFG that generates � �.

Theorem.

��� � � is decidable.

Proof Given an input �, try to decode � into a CFG

�

and a string �.

If “successful” then:

1. Convert

�

to an equivalent Chomsky normal form grammar

� �

.

2. List all derivations with

��� �
	

steps, where � � � .

3. If any of the listed derivations generate �, then accept; otherwise,

reject.

CS280, Lecture 8 7

The Emptiness Problem for CFG

Define

�� � � � �� � � �

is a CFG such that

� � � � � � �

.

Theorem.

�� � � is decidable.

Proof Given �, first try to decode it as a grammar

�

. If “successful”

then test

�

’s ability to generate terminal strings:

1. Mark all the terminals.

2. Repeat the following until no new symbols are marked:

� Mark any variables
�

with a production

� � � such that
all symbols in � are marked.

3. Accept if the start symbol is not marked; reject otherwise.

CS280, Lecture 8 8

Context-Free Languages are Decidable

Theorem. Every context-free language is decidable.

Simulation of a PDA may not halt, so this wouldn’t be a good approach.

Proof Use the machine

�

for

� � � �. Let

�

be a fixed CFG. The

machine for

� � � �

, on input �,

1. runs

�

with input

� �
	 � � , and

2. accepts if

�

accepts and rejects otherwise.

CS280, Lecture 8 9

