The Halting Problem

CS280, Lecture 9



The Halting Problem

We will show that the problem of determining whether or not a given
Turing machine accepts a given input is unsolvable.

In other words, there is no Turing machine (and hence no algorithm)
that decides

Arym = {{M,w) | M is a Turing machine and accepts w}.

(Later, we use this result to conclude that the halting problem, I.e.,

determining whether or not a given TM halts on a given input, is also
unsolvable.)

The method of proof involves the technique of diagonalization, so we
begin with this topic.

CS280, Lecture 9 2



Diagonalization

A set is countable if either it is finite or it has the same size as N i.e.,
there is a one-to-one mapping from the set onto N (in other words,
there is a bijection from the set to V).

Fact. Let Q be the set of all positive rational numbers and R the set of
all positive real numbers. Then Q is countable while R is not.

Proof For the former, each member of Q is expressed as a fraction >
such that m,n € N and ged(m,n) = 1.

So we have only to come up with a bijection from A to the set {™ |
m,n > 1&ged(m,n) =1}.

CS280, Lecture 9 3



@ IS countable

Forp=1,2,..., visit the integral points on the line m + n = p in the first
quadrant of the xzy-plane and count how many pairs (m,n) such that
gcd(m,n) = 1 have been seen.

—

S S S

CS280, Lecture 9 4



R I1s not countable (proof by diagonalization)

For the latter, assume, for contradiction, that R is countable. Let f be a
bijection from R to A/. For each i € NV, let r; = f~1(i). Define z to be
the number between 0 and 1 defined as follows:

(*) For every i € N, the ith digit of z after the decimal point in its
decimal representation is that of »; plus 1 (modulo 10).

For example, if r; = 3.14159,ry = 2.23606,r3 = 1.73205, ..., then x =
243 .. .,

This z is real. By assumption there is a unique k such that z = f~1(k).
Then by definition

(1) the kth digit of = is the kth digit of x plus 1 modulo 10,
which is a contradiction. So, R is not countable. ]

CS280, Lecture 9 5



An Immediate Application of Diagonalization

Corollary. There is a language that is not Turing-recognizable.

Proof The set of Turing machines is countable:

1. Fix an encoding scheme of Turing machines on an alphabet 3.

2. Go through all the strings in 3, e.g., in lexicographic order, and
assign numbers to all legal encodings by counting how many
legal encodings have been seen so far.

A language over > can be viewed as an infinite binary number
0.b1b2bs - - -, called the characteristic sequence, where for each ¢ > 1,
b; corresponds to the membership of the ith string in the language.
So the languages have the same cardinality as the set of binary reals
between 0 and 1, which is uncountable. ]

CS280, Lecture 9 6



Theorem. The language

Ay = {(M,w) | M is a Turing machine and accepts w}

IS not decidable.

Proof Assume that A1y Is decidable. Let T' be a Turing machine that
decides A1y. Define D to be a machine that, on input w,

1. Checks whether w is a legal encoding of some Turing machine, say
M. If not, D immediately rejects w.

2. Simulates T' on (M, (M)).
3. If T accepts, then D rejects; otherwise, it accepts.

Since T decides A1y by assumption, it always halts; so does D.

CS280, Lecture 9 7



Proof that Aty IS undecidable, cont’d

For every Turing machine M,
D accepts (M) < M does not accept (M)
With M = D, we have
D accepts (D) < D does not accept (D).
This is a contradiction. ]

Corollary. Aty Is not Turing-recognizable, and thus, not decidable.
For this corollary we need the following fact.

Fact. A language L is decidable if and only if both L and L are Turing-
recognizable.

Proof of Corollary Aty Is Turing-recognizable and is not decidable.
So, A1y IS not Turing-recognizable BCorollary

CS280, Lecture 9 8



Proof of Fact [=] Let L be decidable and let M be a Turing machine
that decides L. By swapping gaccept and greject Of M we get a Turing
machine M’ that decides L. So both L and L are Turing-decidable, and
thus, Turing-recognizable.

[<] Let L and L be recognized by TMs M; and M,, respectively.
Define a two-tape machine M that, on input x, does the following:

1. M copies z onto Tape 2.

2. M repeats the following until either M; or M5 accepts:
(a) M simulates one step of M; on Tape 1 then one step of
M, on Tape 2.

3. M accepts z if M, has accepted and rejects if M, has accepted.

Then M decides L because for every z, at least one of the two machines
halts on input z. BFact

CS280, Lecture 9 9



