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The Halting Problem

We will show that the problem of determining whether or not a given
Turing machine accepts a given input is unsolvable.

In other words, there is no Turing machine (and hence no algorithm)
that decides

��� � � �� �	
� 
 �� �

is a Turing machine and accepts 
 
.

(Later, we use this result to conclude that the halting problem, i.e.,
determining whether or not a given TM halts on a given input, is also
unsolvable.)

The method of proof involves the technique of diagonalization, so we
begin with this topic.
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Diagonalization

A set is countable if either it is finite or it has the same size as

�

; i.e.,
there is a one-to-one mapping from the set onto

�

(in other words,
there is a bijection from the set to

�

).

Fact. Let

�

be the set of all positive rational numbers and

�

the set of
all positive real numbers. Then

�

is countable while

�

is not.

Proof For the former, each member of
�

is expressed as a fraction

�
�

such that � � � � �

and �	 
 � � � � � � 


.

So we have only to come up with a bijection from

�

to the set

� �
�

�

� � � � 


& �	 
 � � � � � � 
 


.
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�

is countable

For � � 

�

�
�� � � , visit the integral points on the line � � � � � in the first

quadrant of the �� -plane and count how many pairs

� � � � �
such that

�	 
 � � � � � � 


have been seen.
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�

is not countable (proof by diagonalization)

For the latter, assume, for contradiction, that

�

is countable. Let

�

be a

bijection from

�

to

�

. For each

� � �

, let ��� � ��� � � � �
. Define � to be

the number between

�

and




defined as follows:

(*) For every

� � �

, the

�

th digit of � after the decimal point in its
decimal representation is that of ��� plus 1 (modulo 10).

For example, if � � � 	
�


 
 
� �
� ��
 � �
�

� 	 � ��
� ��� � 

�

� 	 � ��
� � � � , then � �

�
� 
 	

� � � ,

This � is real. By assumption there is a unique

�

such that � � � � � � � �

.

Then by definition

(!!) the

�

th digit of � is the
�

th digit of � plus 1 modulo


 �

,

which is a contradiction. So,

�

is not countable.
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An Immediate Application of Diagonalization

Corollary. There is a language that is not Turing-recognizable.

Proof The set of Turing machines is countable:

1. Fix an encoding scheme of Turing machines on an alphabet

�

.

2. Go through all the strings in

�

, e.g., in lexicographic order, and

assign numbers to all legal encodings by counting how many
legal encodings have been seen so far.

A language over

�

can be viewed as an infinite binary number�
�

� � �
 �� � � � , called the characteristic sequence, where for each

� � 


,

�� corresponds to the membership of the

�

th string in the language.
So the languages have the same cardinality as the set of binary reals
between

�

and




, which is uncountable.
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Theorem. The language

��� � � �� �	
� 
 �� �

is a Turing machine and accepts 
 


is not decidable.

Proof Assume that

� � � is decidable. Let

�

be a Turing machine that

decides

� � �. Define

�

to be a machine that, on input 
,

1. Checks whether 
 is a legal encoding of some Turing machine, say

�

. If not,

�

immediately rejects 
.

2. Simulates

�

on

� �	
�

� � � �

.

3. If

�

accepts, then

�

rejects; otherwise, it accepts.

Since

�

decides

� � � by assumption, it always halts; so does

�

.
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Proof that

� � � is undecidable, cont’d

For every Turing machine

�

,

�

accepts

� � � � �

does not accept

� � �
With

� � �

, we have

�

accepts

� � � � �

does not accept
� � �

.
This is a contradiction.

Corollary.

� � � is not Turing-recognizable, and thus, not decidable.

For this corollary we need the following fact.

Fact. A language

�

is decidable if and only if both

�

and

�

are Turing-
recognizable.

Proof of Corollary

� � � is Turing-recognizable and is not decidable.
So,

�� � is not Turing-recognizable Corollary
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Proof of Fact [ �] Let

�

be decidable and let

�

be a Turing machine
that decides

�

. By swapping ���� �� � � and �	�� 
� � � of

�

we get a Turing
machine

� �

that decides

�

. So both

�

and

�

are Turing-decidable, and
thus, Turing-recognizable.

[ �] Let

�

and

�

be recognized by TMs

� � and
�
 , respectively.

Define a two-tape machine

�

that, on input �, does the following:

1.

�

copies � onto Tape 2.

2.

�

repeats the following until either
� � or

�
 accepts:

(a)

�

simulates one step of
� � on Tape 1 then one step of

�
 on Tape 2.

3.

�

accepts � if

� � has accepted and rejects if

�
 has accepted.

Then

�

decides

�

because for every �, at least one of the two machines
halts on input �. Fact
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