
Reducibility

CS280, Lecture 10 1



The Halting Problem

HALTTM = {〈M,w〉 | M is a TM and halts on input w}.

Theorem. HALTTM is undecidable.

Proof We could construct a machine S for ATM from a machine R for

HALTTM. On input x:

1. Check that x is of form 〈M, w〉. If not, reject x.

2. Simulate R on 〈M,w〉. Reject x if R has rejected.

3. M is guaranteed to halt on w.

simulate M on w. Accept x if M has accepted and reject x

otherwise.

CS280, Lecture 10 2



The Emptiness Problem

ETM = {〈M〉 | M is a TM and L(M) = ∅}.

Theorem. ETM is undecidable.

Proof A TM R deciding ETM → a TM S deciding ATM.

S’s algorithm: On input x,

1. Check that x is of form 〈M, w〉. If not, reject x.

2. Construct a machine M1 such that for each input y,

M1 simulates M on w and accepts y if M has accepted.

3. Check L(M1) for emptiness, i.e., simulate R on input 〈M1〉.
Accept x if R has rejected and reject x otherwise.

CS280, Lecture 10 3



Testing Whether a TM Accepts a Regular Language

REGULARTM = {〈M〉 | M is a TM and L(M) is regular }.

Theorem. REGULARTM is undecidable.

Proof A TM R deciding REGULARTM → a TM S deciding ATM.

S’s algorithm: on input x,

1. Check that x is of form 〈M, w〉. If not, reject x.

2. Construct a machine M1: Let a, b be two distinct symbols in the

input alphabet Σ of M . On input y,

(a) Accept y if y = anbn for some n.

(b) Otherwise, simulate M on w, then accept y if and only if
M on w has accepted.

CS280, Lecture 10 4



Proof (cont’d)

The machine M1 satisfies:

(*) L(M1) = {anbn | n ≥ 1} if M doesn’t accept w and Σ∗ otherwise,
so

M accepts w if and only if L(M1) is regular.

3. Simulate R on 〈M1〉. Accept x if R has accepted and reject x

otherwise.

CS280, Lecture 10 5



Testing Equivalence Between TMs

EQTM = {〈M1, M2〉 | M1 and M2 are TMs and L(M1) = L(M2)}.

Theorem. EQTM is undecidable.

Proof A TM R deciding EQTM → a TM S deciding ATM.

S’s algorithm: on input x,

1. Check that x is of form 〈M, w〉. If not, reject x.

2. Construct a machine M1 as in the previous proof.

Construct a machine M2 that accepts Σ∗.

Then L(M1) = L(M2) if and only if M accepts w.

3. Simulate R on 〈M1, M2〉. Accept x if R has accepted and reject x

otherwise.

CS280, Lecture 10 6



Linear Bounded Automata

A linear bounded automaton is a Turing machine wherein the head is
not permitted to move beyond the region in which the input was written.
If the head attempts to move beyond the region it is kept at the same
position.

Lemma. Let M be an LBA with q states and with a tape alphabet of
size s. For every n ≥ 1, for every input of length n, there are precisely
qnsn possible configurations.

CS280, Lecture 10 7



The Acceptance Problem for LBA

ALBA = {〈M, w〉 | M is a TM and accepts w when restricted to be an
LBA }.

Theorem. ALBA is decidable.

Proof Let M be a TM with q states and s symbols in the tape alphabet
and w be an input to M of length n. By the previous lemma, there are
only qnsn configurations, so if M on w accepts, it should do so within
qnsn steps. So we have only to simulate M on w for qnsn steps.

CS280, Lecture 10 8



The Emptiness Problem for LBA

ELBA = {〈M〉 | M is a TM and accepts no input viewed as an LBA }.

Theorem. ELBA is undecidable.

Proof A TM R deciding ELBA → a TM S deciding ATM.

For a string x = 〈M,w〉 such that M is a Turing machine and w

is an input to M , let Lx to be the set of all strings of the form

#C1#C2# · · ·#Cm# such that

1. C1, . . . , Cm are configurations of M ,

2. C1 is the initial configuration of M on w,

3. Cm is an accepting configuration of M on w, and

4. for every i, 1 ≤ i ≤ m − 1, Ci+1 is the next configuration of Ci.

CS280, Lecture 10 9



Proof (cont’d)

Then Lx can be decided by an LBA.

Lx 6= ∅ if and only M accepts w.

S’s algorithm: on input x,

1. Check that x is of form 〈M, w〉. If not, reject x.

2. Construct a TM B that accepts Lx as an LBA.

3. Simulate R on 〈B〉. Reject x if R has accepted 〈B〉 and accept x

otherwise.

CS280, Lecture 10 10



The Equivalence Problem for CFGs

ALLCFG = {〈G〉 | G is a CFG and L(G) = Σ∗}.

Theorem. ALLCFG is undecidable.

Proof For a string x = 〈M, w〉 such that M is a Turing machine and

w is an input to M , let Lx be the set of all #D1# · · ·#Dm# for which

there exist C1, . . . , Cm such that:

1. C1, . . . , Cm are configurations of M ,

2. C1 is the initial configuration of M on w,

3. Cm is an accepting configuration of M on w,

4. for every i, 2 ≤ i ≤ m, Ci is the next configuration of Ci−1, and

5. for every i, 1 ≤ i ≤ m, Di = Ci if i is odd and Di = CR

i
otherwise.

CS280, Lecture 10 11



Proof (cont’d)

Then Lx is empty if and only if M does not accept w.

So, Lx = Σ∗ if and only if M does not accept w.

Lx is a CFL. (Use a PDA that nondeterministically checks the falsity of
2, 3, or 4, accepting all prefixes & extensions.)

a TM R deciding ALLCFG → a TM S deciding ATM

S’s algorithm: on input x,

1. Check that x is of form 〈M, w〉. If not, reject x.

2. Construct a CFG G for Lx. (Convert the above PDA to a CFG.)

3. Simulate R on 〈G〉. Accept x if R has rejected 〈G〉 and reject x

otherwise.

CS280, Lecture 10 12



The Equivalence Problem (cont’d)

Define EQCFG = {〈G, H〉 | G and H are CFGs that generate the same
language }.

Corollary. EQCFG is undecidable.

Proof A TM R deciding EQCFG → a TM S deciding ALLCFG.

S’s algorithm: On input x,

1. Check that x is of form 〈G〉. If not, reject x.

2. Construct a grammar H for Σ∗.

3. Simulate R on 〈G, H〉. Accept x if R has accepted and reject x

otherwise.

CS280, Lecture 10 13


