Reducibility

CS280, Lecture 10

The Halting Problem

HALT v = {(M,w) | M is a TM and halts on input w}.

Theorem. HALT Ty IS undecidable.

Proof We could construct a machine S for Ary; from a machine R for
HALT 1y Oninput z:

1. Check that x is of form (M, w). If not, reject z.
2. Simulate R on (M, w). Reject z if R has rejected.
3. M is guaranteed to halt on w.

simulate M on w. Accept x if M has accepted and reject =z
otherwise.]

CS280, Lecture 10 2

The Emptiness Problem

Ery ={(M)| MisaTMand L(M) = 0}.
Theorem. ETy IS undecidable.

Proof A TM R deciding Ety — a TM S deciding Ay
S’s algorithm: On input =,
1. Check that x is of form (M, w). If not, reject .

2. Construct a machine M; such that for each input v,
M, simulates M on w and accepts y if M has accepted.

3. Check L(M;) for emptiness, i.e., simulate R on input (My).
Accept x if R has rejected and reject = otherwise. [

CS280, Lecture 10 3

Testing Whether a TM Accepts a Regular Language

REGULART\ = {(M) | MisaTM and L(M) is regular }.

Theorem. REGULARTy\ 1S undecidable.

Proof ATM R deciding REGULARTy — aTM S deciding A1y.
S’s algorithm: on input =,

1. Check that x is of form (M, w). If not, reject z.

2. Construct a machine Mj: Let a,b be two distinct symbols in the
iInput alphabet > of M. On input v,
(a) Accept y If y = a"b" for some n.
(b) Otherwise, simulate M on w, then accept y if and only if
M on w has accepted.

CS280, Lecture 10 4

Proof (cont’d)

The machine M, satisfies:

(*) L(M;) ={a™" |n > 1} if M doesn’t accept w and ¥* otherwise,
SO

M accepts w if and only if L(M;) is regular.

3. Simulate R on (M;). Accept x if R has accepted and reject x
otherwise.]

CS280, Lecture 10 5

Testing Equivalence Between TMs

EQ+ry = {{(M7, Ms) | My and M5 are TMs and L(M;) = L(Ms,)}.

Theorem. EQ-y, IS undecidable.

Proof A TM R deciding EQry,; — a TM S deciding Ary.
S’s algorithm: on input =,
1. Check that x is of form (M, w). If not, reject z.

2. Construct a machine M; as in the previous proof.
Construct a machine M, that accepts >*.

Then L(M,) = L(M,) if and only if M accepts w.

3. Simulate R on (M, Ms). Accept x if R has accepted and reject x
otherwise.]

CS280, Lecture 10 6

Linear Bounded Automata

A linear bounded automaton is a Turing machine wherein the head is
not permitted to move beyond the region in which the input was written.

If the head attempts to move beyond the region it is kept at the same
position.

Lemma. Let M be an LBA with ¢ states and with a tape alphabet of

size s. For every n > 1, for every input of length n, there are precisely
gns™ possible configurations.

CS280, Lecture 10 7

The Acceptance Problem for LBA

Apga = {{M,w) | M is a TM and accepts w when restricted to be an
LBA }.

Theorem. A;pa IS decidable.

Proof Let M be a TM with ¢ states and s symbols in the tape alphabet
and w be an input to M of length n. By the previous lemma, there are
only gns™ configurations, so if M on w accepts, it should do so within
gns™ steps. So we have only to simulate M on w for gns™ steps. [

CS280, Lecture 10 8

The Emptiness Problem for LBA

Fisa = {(M) | M is a TM and accepts no input viewed as an LBA }.

Theorem. Ejpa IS undecidable.

Proof A TM R deciding Fga — a TM S deciding Ary.
For a string x = (M,w) such that M is a Turing machine and w
IS an input to M, let L, to be the set of all strings of the form

#HC1#Co# - - - #C,,# such that
1. C4,...,C,, are configurations of M,
2. (1 is the initial configuration of M on w,
3. C,, I1s an accepting configuration of M on w, and

4. foreveryi, 1 <t <m—1, C,. Is the next configuration of C.

CS280, Lecture 10 9

Proof (cont’d)

Then L, can be decided by an LBA.

L, # 0 if and only M accepts w.

S’s algorithm: on input =,
1. Check that x is of form (M, w). If not, reject .

2. Construct a TM B that accepts L, as an LBA.

3. Simulate R on (B). Reject z if R has accepted (B) and accept =
otherwise.]

CS280, Lecture 10 10

The Equivalence Problem for CFGs

ALLcrc = {(G) | Gisa CFG and L(G) = X*}.
Theorem. ALLcgrg 1S undecidable.

Proof For a string x = (M, w) such that M is a Turing machine and
w Is an input to M, let L, be the set of all #D+# - --#D,,,# for which
there exist (', ..., C,, such that:

1. C4,...,C,, are configurations of M,

2. (' Is the initial configuration of M on w,

3. C,, Is an accepting configuration of M on w,

4. forevery i, 2 <i<m, C;Is the next configuration of C;_, and
5. foreveryi, 1 <i<m,D; = C;ifiisoddand D; = C otherwise.

CS280, Lecture 10 11

Proof (cont’d)

Then L, is empty if and only if M does not accept w.
So, L, = ¥* if and only if M does not accept w.

L, is a CFL. (Use a PDA that nondeterministically checks the falsity of
2, 3, or 4, accepting all prefixes & extensions.)

a TM R deciding ALLcrg — a TM S deciding Aty
S’s algorithm: on input =,
1. Check that x is of form (M, w). If not, reject .
2. Construct a CFG G for L,. (Convert the above PDA to a CFG.)

3. Simulate R on (G). Accept x if R has rejected (G) and reject x
otherwise.]

CS280, Lecture 10 12

The Equivalence Problem (cont’d)

Define EQpq = {(G, H) | G and H are CFGs that generate the same
language }.

Corollary. EQ~pc 1S undecidable.
Proof A TM R deciding EQcpc — & TM S deciding ALLcrc.
S’s algorithm: On input =,

1. Check that x is of form (). If not, reject .
2. Construct a grammar H for X*.

3. Simulate R on (G, H). Accept x if R has accepted and reject x
otherwise.]

CS280, Lecture 10 13

