

PCP and Mapping Reducibility

CS280, Lecture 11 1

Post Correspondence Problem (PCP)

Given a finite collection of dominos, each containing a string on each
half, decide whether the dominos can be placed (with repetition) in line
so that the upper halves and the lower halves read the same from
left to right. Such a placement of dominos is called a match.

Example: Given a collection

{

[
b

ca
], [

a

ab
], [

ca

a
], [

abc

c
]

}

the list
{

[
a

ab
] [

b

ca
] [

ca

a
] [

a

ab
] [

abc

c
]

}

yields the string abcaaabc on both halves.

CS280, Lecture 11 2

PCP is undecidable

PCP = {〈P 〉 | P is an instance of the Post correspondence problem
with a match }.

We deal with a modified version of the problem

MPCP = {〈P 〉 | P is an instance of the Post correspondence
problem with a match starting with the first domino }.

Then we transform ATM to MPCP in such a way that, for each x =

〈M, w〉:

(*) the matched string generated by the dominos for x will encode
an accepting computation of M on w (with a “trailer”).

Let M = (Q,Σ, Γ, δ, q0, qaccept, qreject).

CS280, Lecture 11 3

We’ll need dominos [#
#

] and [a
a
] for each a in Γ.

Problem: How do we constrain the (doubled up) sequence of
configurations to be an accepting history?

#.... #........## C # C # C # C1 2 3 N

#.... #........## C # C # C # C1 2 3 N

Solution: Use a “shifted” correspondence (red lines). (Simple vertical
correspondence [#

#
], [a

a
], ..., would give all strings.) Also add dominos

that make the right changes in the vicinity of the state (head position)
symbol (details later).

CS280, Lecture 11 4

Further problem: We’ll end up with one “extra” configuration on the
bottom, the accepting configuration.

Solution: Use dominos that delete a symbol adjacent to qaccept , and
finally one that adds qaccept## to the top and # to the bottom:

w w w #2 n1wk−1wk q acceptwk+1

symbol1 thanless C NC N etc.

w21 ...wk−1 w w #n....q acceptwk+1# w w w #2 n1wk−1wk q acceptwk+1

....

Final portion: ... # # #q
accept

... # # #q
accept

CS280, Lecture 11 5

Question: Why is there a match only if there is an accepting
computation?

Answer: Because only the initial and final domino have an unequal
number of #’s in the top and bottom. So by “forcing” the initial inequality,
we force the correspondence to remain shifted by one configuration
till the end. And the shifted correspondences must comply with the
transition function, by our choice of dominos.

CS280, Lecture 11 6

Details: Three Kinds of Dominos

1. The Initial Domino: [#

#q0x1 ···xn#
].

The lower part is one computational step ahead of the upper
part.

2. The Computation Dominos:

Correspond to configuration rewriting rules. Filling the upper part
that is lagging behind with the computational dominos will
advance the lower part by a single step of M .

3. The Cleaning Dominos:

Dominos that gradually “eat up” the lower part while keeping
the state in qaccept.

CS280, Lecture 11 7

The Computation Dominos

• [#
#

], and [a
a
] for each a ∈ Γ. (This includes [t

t
].)

• For each p, q ∈ Q and a, b, c ∈ Γ such that δ(p, a) = (q, b, L),
[#pa
#qb

] and [cpa
qcb

].

• For each p, q ∈ Q and a, b, c ∈ Γ such that δ(p, a) = (q, b,R),
[pa#

bqt#
] and [pac

bqc
].

Note: Sipser uses [pa
bq

] and [#

t#
] instead of the 2 types above.

CS280, Lecture 11 8

The Cleaning Dominos

• For each a ∈ Σ, [
aqaccept

qaccept
] and [

qaccepta

qaccept
].

• The end domino: [
qaccept##

#
].

CS280, Lecture 11 9

From MPCP to PCP

For a string u = u1u2 · · ·um, let ?u = ?u1 ? u2 ? · · · ? um, u? = u1 ? u2 ?

· · · ? um?, ?u? = ?u1 ? u2 ? · · · ? um?, where ? is a new symbol.

Modify the start domino [t
b
] to [?t

?b?
] and each other domino [u

v
] to [?u

v?
];

add a new domino [?�
�

], where � is a new symbol.

This will force the start domino to be the first one and the newly added
one to be the last one.

CS280, Lecture 11 10

Computable Functions

A function f : Σ∗ → Σ∗ is computable if there exists a Turing machine
M such that for every x ∈ Σ∗, M on x halts with just f(x) on its tape.

Example: Let Σ be a fixed alphabet. Define f : Σ∗ → Σ∗ as follows:

• If w = 〈M〉 for some Turing machine, then f(w) = 〈M ′〉 where M ′ is
M with qaccept and qreject swapped.

• Otherwise, f(w) = w.

Then f is computable.

CS280, Lecture 11 11

Mapping Reducibility

A language A ⊆ Σ∗ is mapping reducible to B ⊆ Σ∗ (write A ≤m B)
if there exists a computable function f : Σ∗ → Σ∗ such that for every
x ∈ Σ∗,

x ∈ A if and only if f(x) ∈ B.
In other words, the function f maps members of A to members of B

and nonmembers of A to nonmembers of B.

Example: ATM ≤m HALTTM . We can use f(x) = x if x is not of
form 〈M, w〉. Otherwise, f(〈M,w〉) = 〈M1, w〉, where M1, for input y,
simulates M on y, and accepts y if M accepts y, and otherwise runs
forever.

Then x ∈ ATM (which implies x is of form 〈M,w〉 and M accepts w) iff
f(x) ∈ HALTTM .

CS280, Lecture 11 12

Properties of Mapping Reducibility

Theorem. If A ≤m B and B is decidable then A is decidable.

Proof Let A ≤m B be witnessed by a Turing machine Mf that
computes a mapping reduction f from A to B.

Suppose B is decided by a Turing machine MB. Construct a new Turing

machine MA:

1. On input x, simulate Mf on x to compute f(x).

2. Simulate MB on f(x). Accept if MB accepts and reject if MB

rejects.

Then MA decides A.

CS280, Lecture 11 13

Properties of Mapping Reducibility (cont’d)

Corollary. If A ≤m B and A is undecidable then B is undecidable.

Theorem. If A ≤m B and B is Turing-recognizable then A is Turing-
recognizable.

Proof Same as for decidable case, but we conclude “Then MA

recognizes A”.

Corollary. If A ≤m B and A is not Turing-recognizable then B is not
Turing-recognizable.

CS280, Lecture 11 14

EQTM Goes Beyond the Turing-Recognizable Languages

Theorem. EQTM is neither Turing-recognizable nor co-Turing-
recognizable.

Proof Show that ATM is mapping reducible to EQTM as well as to
EQTM. Let s ∈ EQTM and t ∈ EQTM be fixed.

Reduction to EQTM

• If x is of the form 〈M, w〉, then f(x) = 〈M1, M2〉, where

− M1 accepts every input y; and

− M2 first simulates M on w and accepts its own input y if

M has accepted w.

• Otherwise, f(x) = t.

f is computable, and for every x, x ∈ ATM if and only if f(x) ∈ EQTM.

CS280, Lecture 11 15

Proof (cont’d)

Reduction to EQTM

• If x is of the form 〈M, w〉, then g(x) = 〈M1,M2〉, where

− M1 rejects every input y; and

− M2 first simulates M on w and accepts its own input y if

M has accepted w.

• Otherwise, g(x) = s.

g is computable and for every x, x ∈ ATM if and only if g(x) 6∈ EQTM.

Thus, ATM ≤m EQTM and ATM ≤m EQTM.

CS280, Lecture 11 16

