Time Complexity Classes

CS280, Lecture 12

Measuring Complexity

Complexity of a problem = the efficiency of the best algorithm for
the problem

Measure the efficiency by time or space, or both

Analyze the efficiency by the growth of the function that relates the
amount of resources used to the input size

Worst-case analysis --- analyze the function that maps each
nonnegative integer n to the maximum amount of resources used for
solving any input of size n with the best algorithm known

An alternative Is average case analysis

CS280, Lecture 12 2

An example: L = {0"1" | n > 0}

Algorithm A, for a 1-tape TM
Match and erase the outermost non-blank symbols

Notation: (' : the symbol currently scanned
|H =] ([H <]) : moving the head to the right (left) by one cell

The Main Loop:

1. if C = U then accept ; if C' =1 then reject
C + U

repeat [H =] until C' = L;

|H <]; if C # 1 then reject; C' < U
repeat [H <| until C' = L; [H =]

a k~ WD

CS280, Lecture 12

Big-O, small-o

Definition. Let f,g: N — R ™ be two functions.

o f = O(yg) if there exists a constant ¢ > 0 such that for all but finitely
many n, f(n) < cg(n).

<

() — 0.

n)

o f=o0(g)if lim,_,

Q
—~

Example: logn = o(n), lognlogn = o(n), 10n 4+ 8logn = O(n), etc.

Note: f = o(g) implies f = O(g), but the converse does not necessarily
hold

The running time of Algorithm A is O(n?)

CS280, Lecture 12 4

Can do in O(n) steps if two tapes are available

Algorithm B, for a 2-tape TM

Copy the first run of Os onto Tape 2 and measure the length of the
following run of 1s

Notation: C;, [H; =], [H; <], 1= 1,2
1. (the initial check)
If C7 = U then accept ; if C; = 1 then reject
2. put the left marker
Cy + #; [Hy =]
3. (copying the first block)
while C; =0 do
o (5« 0; [Hy =]; [Hy =]

CS280, Lecture 12 5

4. if C; = LU then reject;
5. (comparing the length)
while C; =1 do
o if Co = # thenreject; [Hy =|; [Hy <|;
6. If C1 = U and Cy; = # then accept ; else reject

Algorithm B runs in n + 1 = O(n) steps.

CS280, Lecture 12

Deterministic Time Complexity Classes

Definition. Lett¢: N — N be a function. A Turing machine M is t(n)
time (or ¢(n) time-bounded) if for every n € N, and for every input = of
length n, M on x halts within ¢(n) steps.

Definition. Lett¢ : N — N be a function. Define TIME(¢(n)) = {L | L
IS decided by an O(t(n)) time multi-tape Turing machine }.

L={0"1"|n > 1}isin TIME(n), the linear time complexity class

CS280, Lecture 12 7

Nondeterministic Time Complexity Classes

Definition. Lett : N — N be a function. A nondeterministic Turing
machine N is t(n) time if for every n € N, and for every input z of
length n, N on z halts within ¢(n) steps along all computation paths.

Definition. Lett¢ : N — N be a function. Define NTIME(¢t(n)) =
{L | Lis decided by an O(t(n)) time nondeterministic multi-tape Turing
machine }.

CS280, Lecture 12 8

Relationships Among Models

Theorem. For every t(n) > n, each t(n) time multi-tape Turing machine
has an equivalent ¢(n)? time single-tape Turing machine.

Theorem. For every t(n) > n, each t(n) time nondeterministic Turing
machine has an equivalent 2°(™) time single-tape Turing machine.

CS280, Lecture 12 9

