Classes P and NP
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The Complexity Class P

Juris Hartmanis and Richard Stearns [1965] : defined computational

complexity — measuring complexity of problems by the number of steps
(or the number of cells) expended in the worst case under the TM model

Fundamental results in the Hartmanis-Stearns paper:

1. Time Hierarchy Theorem (see Sections 9.1 —9.10) - - -

TIME(t(n)) # TIME(t(n)?) for all reasonable ¢(n)

2. Linear Speed-up Theorem - - -

TIME(t(n)) = TIME(ct(n)) for all ¢ > 0 and all reasonable t(n)

A better hierarchy theorem is proven by Harry Lewis and Stearns
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The Complexity Class P (continued)

Alan Cobham [1964], Jack Edmonds [1965], and Michael Rabin [1966]

suggested the “polynomial time” class as a broad class of problems
that are solvable in a reasonable amount of time

P = U, TIME(n*)
Why polynomial, why not, say n3?

Because the “polynomial time” is invariant under the model of
computation

NP is the nondeterministic counterpart of P
NP = {J,.o NTIME(n*)
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Problemsin P

The Path Problem
Input: A directed graph G = (V, FE) and s,t, 1 < s,t < |V|
Question: Does the graph have a directed path from s to t?

PATH : the set of all positive instances (G, s, t) of the Path Problem

An encoding of a graph can be its adjacency matrix (a;;):
foreveryi,j,1 <i,5 <n,a;; =11if (4,5) € E and 0 otherwise

The entire encoding can be

0"#ajas - - - a, #05#11,
where a1, aq, ..., a, are the rows of the adjacency matrix
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A Polynomial Time Algorithm for PATH

Let G = (V, E) be aDG, n = |V|, and A the adjacency matrix of G.

For each k£ > 1, let A®*) be the kth power of A, where \V and A replace
+ and x.

Then for every £ > 1 and every 7,5, 1 < 4,5 < n, the (z,7)th entry of
A%) is a1 if and only if there is a directed path from i to j of length
at most k£ in G.

Thus the following will do for deciding whether (G, s,t) € PATH:

(*) Compute B = A™); if the (s, t)th entry of B = 1 accept ; else reject

Running Time Analysis: 2n bits examined per entry, n? entries, n —1
sequential multiplications yields A™) ... an O(n*) step algorithm
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Testing Relative Primality of Two Numbers

The Relative Primality Problem
Input: Integersz,y > 1
Question: Are x and y, relatively prime, i.e., ged(z,y) = 17?

RELPRIME : the set of all positive instances (x,y) of the Relative
Primality Problem

Note: x and y should not be encoded in unary

We will use Euclid’s algorithm for GCD:

(*) if Euclid’s Alg. on (z,y) outputs 1 then accept ; else reject

Running Time Analysis: O(n?®), based on running time of Euclid’s
algorithm. Thus Relative Primality is in P.
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A Cubic Time Algorithm for GCD

Euclid’s Algorithm for GCD: On input (z, y):

1. repeat z + z mod y; swap x and y; until y = 0

2. output x

How quickly does = decrease? (After 1 step, x remains > y)

Ify >xz/2,thenzmody <z —y < x/2;

Ify <z/2,thenzmody <y—1<z/2.

So, each iteration reduces x by at least half. (1 bit less per iteration)

If max{|z|,|y|} = n, then the running time is O(n?). (Finding remainder
is O(n?), e.g., using binary division.)

Invariant in Euclid’s algorithm: x, y are relatively prime throughout iff
they are relatively prime initially, since relative primality is preserved by
x <+ x mod y. (Consider 2 cases: z < y, x > y.)
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Polynomial Time Decidability of Context-Free Languages

Theorem. Every context-free language is in P.

Proof Let L be context-free. Let G be a CNF grammar for L. Suppose
w = wq - - Wy IS @ string whose membership in L we are testing

If n =0 then acceptif and only if § — eis arule.

For each ¢,5,1 < i < j < n, let t(¢,5) be the set of all variables from
which w; - - -w,; can be produced

ldea: Compute t(¢,5) for all 7,57, 1 < 7 < 7 < n, using dynamic
programming; then test the membership by examining whether S €
t(1,n)
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Dynamic Programming for Computing the Table

Initial:  ¢(i,7) < the set of all A such that A — w, is arule

Loop:
fori=2ton {length of substring}
fortr=1ton—/4+1 {pos® (left index) of substring}
j=i+L—1;t(i,5) = 0
fork=:toj5—1 {dividing point in substring}

if A, B € t(i, k),C € t(k+1,7) such that A — BC'is a rule
then add A to ¢(4, 5)

Final Test: acceptifandonlyif S € t(1,n)
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The Class NP

The Hamiltonian Path Problem

Input: A directed graph G = (V,FE)and s,t € V, s # t

Question: Is there a Hamiltonian Path from s to ¢ In G, iL.e., a
directed path from s to ¢ that visits all the nodes exactly once?

HAMPATH : the set of all positive instances (G, s, t) of the Hamiltonian
Path Problem

The Compositeness Problem

Input: Integerx > 1

Question: Is x a composite number, i.e., does it have an integer
divisor other than 1 and z?

COMPOSITES : the set of all composite numbers x
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A Characterization of NP by Verifiers

A verifier of a language A is an algorithm V' such that
A ={w |V accepts (w, c) for some string c}.

Measure the time of V' in terms of the length of w. For a fixed V, the
string ¢ serving as witness to w € A is called a certificate or a proof

Definition. (alternative) NP is the class of languages that have
polynomial time verifiers.

Key observation: if V accepts (w, c¢) in time p(|w|) for some polynomial
p, then the portion of ¢ examined in the computation is at most of length

p(Jw]).
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Equivalence of the Two Definitions of NP

Theorem. The alternative definition of NP is equivalent to the first.
Proof (Sketch) Let p be any polynomial.

Suppose L has a p(n) time verifier V.. Then for every z, we can consider
all certificates of length at most p(|z|). Let N be an NTM that, on input
of length n, (i) nondeterministically guesses a string ¢, |¢| < p(n), where
n = |x|, (ii) simulates V on (z, c), and (iii) accepts if and only if V' has
accepted. Then N decides L and is O(p(n)) time.

Suppose L is decided by a p(n) time NTM N. Consider a verifier V that,
on input (z, c), treats ¢ as a computation path (choice sequence) for N
and simulates N on z along ¢ for at most p(|z|) steps, and accepts if
and only if N has accepted. Then for every x, V accepts z for some c
If and only if N on x accepts for some computation path. Also it’s clear
that V' operates in polynomial time. [
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Membership of HAMPATH and COMPOSITES in NP

HAMPATH: Define a certificate for each (G,s,t) € HAMPATH to be
any sequence (vy, ..., v,) Of nodes such that

(i) forevery i, 1 <i <n,:=v, for some j,
(i) s = vy,

(iii) t = v,, and

(iv) foreveryi, 1 <i<n-—1, (v;,v11) € E.

A correct certificate can be of length O(nlogn) and verification can be
done in O(n?®) steps using an adjacency matrix.

COMPOSITES': Define a certificate for each + € COMPOSITES to be
any number y such that y divides z and 1 < y < x. Then a correct
certificate can be of length O(n)
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More Problems in NP

The Cligue Problem
Input: AgraphG=(V,E)and k > 1
Question: Does G contain a complete graph of size > k?

CLIQUE : the set of all positive instances (G, k) of the Clique Problem
Theorem. CLIQUE is in NP.

Proof (Sketch) Define a certificate for an instance (G, k), where G is
an n-node graph, to be an n-bit sequence ¢ = ¢; - - - ¢, such that:
foreveryi,j,1<i<j<m,ifc,=c¢;=1,then (i,j) € E

Then verification can be done in O(n?) steps. ]
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More Problems in NP (cont’d)

The Subset Sum Problem
Input: integers zq, ..., zx andt
Question: Is there a subset of {z4,...,x;} that adds up to t?

SUBSET-SUM : the set of all positive instances (S,t) of the Subset
Sum Problem

Theorem. SUBSET-SUM is in NP.

Proof (Sketch) Define a certificate for an instance (S, t) with |S| = nin

SUBSET-SUM to be a k-bit sequence c; - - - ¢, such that Zle c;x; =t
(k <n).

Then verification can be done in O(n?) steps. ]
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