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The Complexity Class P


Juris Hartmanis and Richard Stearns [1965] : defined computational
complexity — measuring complexity of problems by the number of steps
(or the number of cells) expended in the worst case under the TM model


Fundamental results in the Hartmanis-Stearns paper:


1. Time Hierarchy Theorem (see Sections 9.1 – 9.10) � � �


� � �� ��� �	� 
 
� � � � �� ��� �	� 
  



for all reasonable


� �	� 



2. Linear Speed-up Theorem � � �


� � �� ��� �	� 
 
 � � � �� �	� � � � 
 

for all � � �


and all reasonable


� � � 



A better hierarchy theorem is proven by Harry Lewis and Stearns
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The Complexity Class P (continued)


Alan Cobham [1964], Jack Edmonds [1965], and Michael Rabin [1966]
suggested the “polynomial time” class as a broad class of problems
that are solvable in a reasonable amount of time


� � ��
� � �


� � �� �	� � 

Why polynomial, why not, say � �


?


Because the “polynomial time” is invariant under the model of
computation


NP is the nondeterministic counterpart of P


� � � ��
� � �
� � � �� �	� � 
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Problems in P


The Path Problem
Input: A directed graph


� � �� � � 



and � � � ,


� � � � � � � � �


Question: Does the graph have a directed path from � to �


?


� 	
 �


: the set of all positive instances


� � � � � � 
of the Path Problem


An encoding of a graph can be its adjacency matrix


����� � 



:
for every


� � � � � � � � � � � , �� � � �


if
� � � � 
�� �


and


�


otherwise


The entire encoding can be� � ����� �  � � � � � � � � � � �


,
where � � � �  �� � � � � � are the rows of the adjacency matrix
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A Polynomial Time Algorithm for


� 	
 �


Let


� � �� � � 



be a DG, � � � � �


, and


�


the adjacency matrix of


�


.


For each


� � �


, let


� �� �


be the


�


th power of


�


, where
�


and


�


replace


� and � .


Then for every


� � �


and every


� � �


,


� � � � � � � , the


� � � � 



th entry of


� �� �


is a 1 if and only if there is a directed path from


�


to


�


of length
at most


�


in


�


.


Thus the following will do for deciding whether


� � � � � �  � � 	
 �


:


(*) Compute


	 � � � � �


; if the


� � � � 

th entry of


	 � �


accept ; else reject
Running Time Analysis:



� bits examined per entry, � 


entries, � �
�


sequential multiplications yields


� � � � � � � an


� �	�  



step algorithm
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Testing Relative Primality of Two Numbers


The Relative Primality Problem
Input: Integers � � � � �


Question: Are � and �, relatively prime, i.e., �� � � � � � 
 � �


?


�� � � �� 	�


: the set of all positive instances
� � � � 


of the Relative
Primality Problem


Note: � and � should not be encoded in unary


We will use Euclid’s algorithm for GCD:


(*) if Euclid’s Alg. on


� � � � 


outputs
�


then accept ; else reject


Running Time Analysis:
� � � � 



, based on running time of Euclid’s
algorithm. Thus Relative Primality is in P.
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A Cubic Time Algorithm for GCD


Euclid’s Algorithm for GCD: On input


� � � � 


:


1. repeat � � � � � � �; swap � and �; until � � �
2. output �


How quickly does � decrease? (After 1 step, � remains � �)
If � � � � 



, then � � � � � � � � � � � � 



;
If � � � � 



, then � � � � � � � �
� � � � 



.
So, each iteration reduces � by at least half. (1 bit less per iteration)


If � �� � � � � � � � �� � � , then the running time is


� �	� � 



. (Finding remainder
is


� � �  



, e.g., using binary division.)


Invariant in Euclid’s algorithm: �, � are relatively prime throughout iff
they are relatively prime initially, since relative primality is preserved by


� � � � � � �. (Consider 2 cases: � � �, � � �.)
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Polynomial Time Decidability of Context-Free Languages


Theorem. Every context-free language is in


�


.


Proof Let


�


be context-free. Let


�


be a CNF grammar for


�


. Suppose


� � �� � � � � � is a string whose membership in


�


we are testing


if � � �


then accept if and only if


� �� is a rule.


For each


� � � � � � � � � � � , let


� � � � � 



be the set of all variables from
which �� � � � � � can be produced


Idea: Compute


� � � � � 



for all


� � �
,


� � � � � � � , using dynamic
programming; then test the membership by examining whether


� �


� � � � � 
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Dynamic Programming for Computing the Table


Initial:


� � � � � 
 � the set of all


�


such that


� � �� is a rule


Loop:


for


� � 



to � �


length of substring
�


for


� � �


to � �
� � � �


pos


�


(left index) of substring


�


� � � � �


�
�


;


� � � � � 
 � �


;
for


� � �


to


�
�


� �


dividing point in substring


�


if


� � � 	� � � � � � 
 � �� � � � � � � � 

such that


� � 	 �


is a rule
then add


�


to


� � � � � 

Final Test: accept if and only if


�� � � � � � 
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The Class NP


The Hamiltonian Path Problem
Input: A directed graph


� � �� � � 



and � � � � �


, �� � �
Question: Is there a Hamiltonian Path from � to


�
in G, i.e., a


directed path from � to


�


that visits all the nodes exactly once?


� 	 	 � 	
 �


: the set of all positive instances
� � � � � � 


of the Hamiltonian
Path Problem


The Compositeness Problem
Input: Integer � � �


Question: Is � a composite number, i.e., does it have an integer
divisor other than


�


and �?


�� 	 � � �� 
 � �


: the set of all composite numbers �
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A Characterization of NP by Verifiers


A verifier of a language


�


is an algorithm


�


such that


� � � � � �


accepts


� � � � 


for some string � �
.


Measure the time of


�


in terms of the length of �. For a fixed


�


, the
string � serving as witness to �� �


is called a certificate or a proof


Definition. (alternative)


� �


is the class of languages that have
polynomial time verifiers.


Key observation: if


�


accepts


� � � � 
in time �


� � � � 



for some polynomial


�, then the portion of � examined in the computation is at most of length


�
� � � � 



.
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Equivalence of the Two Definitions of


� �


Theorem. The alternative definition of


� �


is equivalent to the first.


Proof (Sketch) Let � be any polynomial.


Suppose


�


has a �
� � 



time verifier


�


. Then for every �, we can consider
all certificates of length at most �


� � � � 



. Let


�


be an NTM that, on input �


of length � , (i) nondeterministically guesses a string � ,


� � � � �
�	� 



, where� � � � � , (ii) simulates


�


on


� � � � 


, and (iii) accepts if and only if


�


has
accepted. Then


�


decides


�


and is


� �
�


� � 
 

time.


Suppose


�


is decided by a �
�	� 



time NTM


�


. Consider a verifier


�


that,
on input


� � � � 


, treats � as a computation path (choice sequence) for


�


and simulates


�


on � along � for at most �
� � � � 



steps, and accepts if
and only if


�


has accepted. Then for every �, �


accepts � for some �


if and only if


�


on � accepts for some computation path. Also it’s clear
that


�


operates in polynomial time.
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Membership of


� 	 	 � 	
 �


and


�� 	 � � �� 
 � �


in


� �


� 	 	 � 	
 �


: Define a certificate for each


� � � � � �  � � 	 	 � 	
 �
to be


any sequence


���� � � � � � � � 


of nodes such that


(i) for every


�


,


� � � � � ,


� � � � for some


�


,


(ii) � � �� ,


(iii)


� � � �, and


(iv) for every


�


,


� � � � � �
�


,


��� � �� �� 
 � �
.


A correct certificate can be of length
� �	� � � � � 



and verification can be
done in


� � � � 



steps using an adjacency matrix.


�� 	 � � �� 
 � �


: Define a certificate for each �� �� 	 � � �� 
 � �


to be
any number � such that � divides � and


� � � � �. Then a correct
certificate can be of length


� �	� 
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More Problems in NP


The Clique Problem
Input: A graph


� � � � � � 



and


� � �


Question: Does


�


contain a complete graph of size
� �


?


� �� � ��


: the set of all positive instances


� � � � 
of the Clique Problem


Theorem.


� � � � ��


is in


� �


.


Proof (Sketch) Define a certificate for an instance


� � � � 


, where


�


is
an � -node graph, to be an � -bit sequence � � �� � � � � � such that:


for every


� � �


,


� � � � � � � , if �� � � � � �


, then


� � � � 
 � �


Then verification can be done in
� �	� � 



steps.
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More Problems in NP (cont’d)


The Subset Sum Problem
Input: integers �� � � � � � �� and


�


Question: Is there a subset of


� �� � � � � � �� �


that adds up to


�


?


� �� �� 



-


� � 	


: the set of all positive instances
� � � � 


of the Subset
Sum Problem


Theorem.


� �� �� 



-


� � 	


is in


� �


.


Proof (Sketch) Define a certificate for an instance


� � � � 


with


� � � � � in� �� �� 



-


� � 	


to be a


�


-bit sequence �� � � � � � such that


�
� �� �� �� � �


� � � � 



.


Then verification can be done in


� �	�  



steps.
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