

Classes P and NP

CS280, Lecture 13 1

The Complexity Class P

Juris Hartmanis and Richard Stearns [1965] : defined computational
complexity — measuring complexity of problems by the number of steps
(or the number of cells) expended in the worst case under the TM model

Fundamental results in the Hartmanis-Stearns paper:

1. Time Hierarchy Theorem (see Sections 9.1 – 9.10) � � �

� � �� ��� �	�

� � � � �� ��� �	�

for all reasonable

� �	�

2. Linear Speed-up Theorem � � �

� � �� ��� �	�

 � � � �� �	� � � �

for all � � �

and all reasonable

� � �

A better hierarchy theorem is proven by Harry Lewis and Stearns

CS280, Lecture 13 2

The Complexity Class P (continued)

Alan Cobham [1964], Jack Edmonds [1965], and Michael Rabin [1966]
suggested the “polynomial time” class as a broad class of problems
that are solvable in a reasonable amount of time

� � ��
� � �

� � �� �	� �

Why polynomial, why not, say � �

?

Because the “polynomial time” is invariant under the model of
computation

NP is the nondeterministic counterpart of P

� � � ��
� � �
� � � �� �	� �

CS280, Lecture 13 3

Problems in P

The Path Problem
Input: A directed graph

� � �� � �

and � � � ,

� � � � � � � � �

Question: Does the graph have a directed path from � to �

?

� 	
 �

: the set of all positive instances

� � � � � �
of the Path Problem

An encoding of a graph can be its adjacency matrix

����� �

:
for every

� � � � � � � � � � � , �� � � �

if
� � � �
�� �

and

�

otherwise

The entire encoding can be� � ����� � � � � � � � � � � � �

,
where � � � � �� � � � � � are the rows of the adjacency matrix

CS280, Lecture 13 4

A Polynomial Time Algorithm for

� 	
 �

Let

� � �� � �

be a DG, � � � � �

, and

�

the adjacency matrix of

�

.

For each

� � �

, let

� �� �

be the

�

th power of

�

, where
�

and

�

replace

� and � .

Then for every

� � �

and every

� � �

,

� � � � � � � , the

� � � �

th entry of

� �� �

is a 1 if and only if there is a directed path from

�

to

�

of length
at most

�

in

�

.

Thus the following will do for deciding whether

� � � � � � � � 	
 �

:

(*) Compute

	 � � � � �

; if the

� � � �

th entry of

	 � �

accept ; else reject
Running Time Analysis:

� bits examined per entry, �

entries, � �
�

sequential multiplications yields

� � � � � � � an

� �	�

step algorithm

CS280, Lecture 13 5

Testing Relative Primality of Two Numbers

The Relative Primality Problem
Input: Integers � � � � �

Question: Are � and �, relatively prime, i.e., �� � � � � �
 � �

?

�� � � �� 	�

: the set of all positive instances
� � � �

of the Relative
Primality Problem

Note: � and � should not be encoded in unary

We will use Euclid’s algorithm for GCD:

(*) if Euclid’s Alg. on

� � � �

outputs
�

then accept ; else reject

Running Time Analysis:
� � � �

, based on running time of Euclid’s
algorithm. Thus Relative Primality is in P.

CS280, Lecture 13 6

A Cubic Time Algorithm for GCD

Euclid’s Algorithm for GCD: On input

� � � �

:

1. repeat � � � � � � �; swap � and �; until � � �
2. output �

How quickly does � decrease? (After 1 step, � remains � �)
If � � � �

, then � � � � � � � � � � � �

;
If � � � �

, then � � � � � � � �
� � � �

.
So, each iteration reduces � by at least half. (1 bit less per iteration)

If � �� � � � � � � � �� � � , then the running time is

� �	� �

. (Finding remainder
is

� � �

, e.g., using binary division.)

Invariant in Euclid’s algorithm: �, � are relatively prime throughout iff
they are relatively prime initially, since relative primality is preserved by

� � � � � � �. (Consider 2 cases: � � �, � � �.)

CS280, Lecture 13 7

Polynomial Time Decidability of Context-Free Languages

Theorem. Every context-free language is in

�

.

Proof Let

�

be context-free. Let

�

be a CNF grammar for

�

. Suppose

� � �� � � � � � is a string whose membership in

�

we are testing

if � � �

then accept if and only if

� �� is a rule.

For each

� � � � � � � � � � � , let

� � � � �

be the set of all variables from
which �� � � � � � can be produced

Idea: Compute

� � � � �

for all

� � �
,

� � � � � � � , using dynamic
programming; then test the membership by examining whether

� �

� � � � �

CS280, Lecture 13 8

Dynamic Programming for Computing the Table

Initial:

� � � � �
 � the set of all

�

such that

� � �� is a rule

Loop:

for

� �

to � �

length of substring
�

for

� � �

to � �
� � � �

pos

�

(left index) of substring

�

� � � � �

�
�

;

� � � � �
 � �

;
for

� � �

to

�
�

� �

dividing point in substring

�

if

� � � 	� � � � � �
 � �� � � � � � � �

such that

� � 	 �

is a rule
then add

�

to

� � � � �

Final Test: accept if and only if

�� � � � � �

CS280, Lecture 13 9

The Class NP

The Hamiltonian Path Problem
Input: A directed graph

� � �� � �

and � � � � �

, �� � �
Question: Is there a Hamiltonian Path from � to

�
in G, i.e., a

directed path from � to

�

that visits all the nodes exactly once?

� 	 	 � 	
 �

: the set of all positive instances
� � � � � �

of the Hamiltonian
Path Problem

The Compositeness Problem
Input: Integer � � �

Question: Is � a composite number, i.e., does it have an integer
divisor other than

�

and �?

�� 	 � � ��
 � �

: the set of all composite numbers �

CS280, Lecture 13 10

A Characterization of NP by Verifiers

A verifier of a language

�

is an algorithm

�

such that

� � � � � �

accepts

� � � �

for some string � �
.

Measure the time of

�

in terms of the length of �. For a fixed

�

, the
string � serving as witness to �� �

is called a certificate or a proof

Definition. (alternative)

� �

is the class of languages that have
polynomial time verifiers.

Key observation: if

�

accepts

� � � �
in time �

� � � �

for some polynomial

�, then the portion of � examined in the computation is at most of length

�
� � � �

.

CS280, Lecture 13 11

Equivalence of the Two Definitions of

� �

Theorem. The alternative definition of

� �

is equivalent to the first.

Proof (Sketch) Let � be any polynomial.

Suppose

�

has a �
� �

time verifier

�

. Then for every �, we can consider
all certificates of length at most �

� � � �

. Let

�

be an NTM that, on input �

of length � , (i) nondeterministically guesses a string � ,

� � � � �
�	�

, where� � � � � , (ii) simulates

�

on

� � � �

, and (iii) accepts if and only if

�

has
accepted. Then

�

decides

�

and is

� �
�

� �

time.

Suppose

�

is decided by a �
�	�

time NTM

�

. Consider a verifier

�

that,
on input

� � � �

, treats � as a computation path (choice sequence) for

�

and simulates

�

on � along � for at most �
� � � �

steps, and accepts if
and only if

�

has accepted. Then for every �, �

accepts � for some �

if and only if

�

on � accepts for some computation path. Also it’s clear
that

�

operates in polynomial time.

CS280, Lecture 13 12

Membership of

� 	 	 � 	
 �

and

�� 	 � � ��
 � �

in

� �

� 	 	 � 	
 �

: Define a certificate for each

� � � � � � � � 	 	 � 	
 �
to be

any sequence

���� � � � � � � �

of nodes such that

(i) for every

�

,

� � � � � ,

� � � � for some

�

,

(ii) � � �� ,

(iii)

� � � �, and

(iv) for every

�

,

� � � � � �
�

,

��� � �� ��
 � �
.

A correct certificate can be of length
� �	� � � � �

and verification can be
done in

� � � �

steps using an adjacency matrix.

�� 	 � � ��
 � �

: Define a certificate for each �� �� 	 � � ��
 � �

to be
any number � such that � divides � and

� � � � �. Then a correct
certificate can be of length

� �	�

CS280, Lecture 13 13

More Problems in NP

The Clique Problem
Input: A graph

� � � � � �

and

� � �

Question: Does

�

contain a complete graph of size
� �

?

� �� � ��

: the set of all positive instances

� � � �
of the Clique Problem

Theorem.

� � � � ��

is in

� �

.

Proof (Sketch) Define a certificate for an instance

� � � �

, where

�

is
an � -node graph, to be an � -bit sequence � � �� � � � � � such that:

for every

� � �

,

� � � � � � � , if �� � � � � �

, then

� � � �
 � �

Then verification can be done in
� �	� �

steps.

CS280, Lecture 13 14

More Problems in NP (cont’d)

The Subset Sum Problem
Input: integers �� � � � � � �� and

�

Question: Is there a subset of

� �� � � � � � �� �

that adds up to

�

?

� �� ��

-

� � 	

: the set of all positive instances
� � � �

of the Subset
Sum Problem

Theorem.

� �� ��

-

� � 	

is in

� �

.

Proof (Sketch) Define a certificate for an instance

� � � �

with

� � � � � in� �� ��

-

� � 	

to be a

�

-bit sequence �� � � � � � such that

�
� �� �� �� � �

� � � �

.

Then verification can be done in

� �	�

steps.

CS280, Lecture 13 15

