

Space Complexity — Savitch’s Theorem

Space Complexity of TMs

CS280, Lecture 16 1

The space complexity of a deterministic Turing machine M

· · · for each n, it is the maximum number of tape cells that M ’s head
touches in processing any input of length n

The space complexity of a nondeterministic Turing machine M

· · · take the maximum for all computation paths of M on all inputs of
length n

For any f : N → N , a Turing machine M is f(n) space if M ’s space
complexity is f .

Note: Time bounded Turing machines always halt, but space
bounded Turing machines may or may not halt.
(By a theorem of Sipser, if f is space-constructible – see p. 336 Sipser – we can
convert to an f -space TM that always halts, i.e., a decider.)

CS280, Lecture 16 2

Whether the input can be modified or not

For functions f such that f(n) < n for some n, we treat the space

complexity differently:

• the Turing machine has more than one tape,

• the input is given with markers indicating two ends and will never
be modified,

• only the work tapes are considered in measuring the space

complexity of a computation.

Remark: In some versions, intended to deal with space complexities smaller than
log n, markers are used to indicate the two ends of the allowable space of f(n)

cells on each work tape. But f(n) cannot be an arbitrary, perhaps non-computable
function, or else we could prove undecidable problems to be O(1)-space decidable!

CS280, Lecture 16 3

Space Complexity Classes

Definition. Let f : N → N be a function. Then
SPACE(f(n)) = {L | L is decided by an O(f(n)) space deterministic
Turing machine }, and.
NSPACE(f(n)) = {L | L is decided by an O(f(n)) space
nondeterministic Turing machine }.

Example: SAT ∈ SPACE(n).
Consider a 2-tape TM that, on input a formula φ of n variables, tries all
assignments to φ, each viewed as an n bit binary number, and accepts
if and only if one assignment that satisfies φ has been found.

Such a machine correctly decides SAT and O(n) space.

CS280, Lecture 16 4

Space Complexity May Depend on Encoding Schemes

Example: CLIQUE ∈ SPACE(
√

n)
Suppose that the adjacency matrix is used for representing a graph.

Consider a 2-tape TM that, on input of a graph G = (V, E) of some m

nodes and a number k ≥ 1, tries all possible subsets of V , viewed as
an m-bit binary number, and accepts if and only if one subset is of size
k and is a clique in G.

Let the encoding length be n. Then n ≥ m2 and the space requirement
is O(m). So, CLIQUE ∈ SPACE(

√
n).

CS280, Lecture 16 5

Savitch’s Theorem

Theorem. Suppose f(n) ≥ C log n for some constant C > 0. Then
NSPACE(f(n)) ⊆ SPACE(f(n)2).

Proof Let f(n) ≥ log n, L ∈ NSPACE(f(n)) via a 2-tape NTM M

with an unmodifiable input tape and a work tape. Let x, |x| = n, be an
input. Since a marker is provided at each end of each tape, we can
assume that M erases the work tape cells and moves the heads to the
leftmost positions before halting so that there is a unique accepting
configuration.

CS280, Lecture 16 6

Encoding Configurations

Each configuration of M on x is a combination of the state, the
input head position, the work tape head position, and the work
tape contents, requiring O(1) symbols, O(log n) symbols, O(log f(n))
symbols, and f(n) symbols, respectively.

Since f(n) ≥ C log n, the total number of symbols needed is at most
kf(n) for some fixed k.

There are at most 2lf(n) configurations for some fixed l.

CS280, Lecture 16 7

Reachability

For configurations c, c′ and an integer t ≥ 0, define
CANYIELD(c, c′, t) = 1 if c yields c′ within 2t steps

and 0 otherwise.

Let c0 be the initial configuration and caccept be the unique accepting
configuration. Then x ∈ L if and only if CANYIELD(c0, caccept, lf(n)) =
1.

For each c, c′, CANYIELD(c, c′, 0) = 1 if and only if c ⇒ c′, so whether
CANYIELD(c, c′, 0) = 1 can be tested by simulating all possible single
step moves of the TM from configuration c.

For each c, c′, and t > 0, CANYIELD(c, c′, t) = 1 if and only if there is
some d such that CANYIELD(c, d, t−1) = CANYIELD(d, c′, t−1) = 1.

CS280, Lecture 16 8

Deterministic Recursive Reachability Testing

Call CANYIELD(c0, caccept, lf(n)) and accept if and only if 1 is
returned.

CANYIELD(c, c′, t)
if t = 0 then simulate all possible one-step moves of M

from c, and return 1 if c′ is generated
else

for each configuration d

if CANYIELD(c, d, t − 1) = CANYIELD(d, c′, t − 1) = 1
then return 1.

return 0.

The recursion depth is t, so the space requirement is O(kf(n) · lf(n)) =
O(f(n)2).

CS280, Lecture 16 9

