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PSPACE

PSPACE is the class of all languages decided by polynomial space
Turing machines. One can think of NPSPACE, but this is identical to
PSPACE by Savitch’s Theorem.

NP is included in PSPACE.

PSPACE completeness under polynomial-time reductions: Karp 1972
({(G,w) |G is a CSG that generates w} is PSPACE complete — even
though CSLs are exactly NSPACE(n)).
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TOBF

A gquantified formula is one in which quantifiers 4 and ¥V may appeatr.
Each quantifier should be followed immediately by a variable, which is
bound to the quantifier. 4=z means “for some value of z” and Vx means

“for every value of x.” A formula may contain constants 0, 1 as well as
variables.

The guantification applies to every occurrence of the variable to the right
of the point of quantification within the innermost pair of parentheses
that contains the quantifier. This is called the scope of the quantifier.

A formula is fully quantified if all the variables are bound.

A formula is in prenex normal form if all of its quantifiers appear at the
beginning.

TQBF = {¢ | ¢ is a true fully quantified Boolean formula }.
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TOBF is PSPACE-complete

Theorem. TQBF is PSPACE-complete under polynomial time mapping
reductions. (Stockmeyer, 1974)

Proof TQBF isin PSPACE. We can write a recursive procedure TEST
to test the membership. Let ¢ be a formula on n variables

e If ¢ contains no quantifier, it is TRUE or FALSE. Output “yes” if it is
TRUE and “no” otherwise.

e Let QQy be the leftmost quantifier.

o If Q = d, output “yes” if TEST outputs “yes” on either ¢(y = 0) or
¢»(y = 1) and “no” otherwise.

o If ) =V, output “yes” if TEST outputs “yes” on both ¢(y = 0) and
¢»(y = 1) and “no” otherwise.
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TOBF is PSPACE-complete (cont’d)

This procedure has the recursion depth of n. A quadratic space Turing
machine can implement it.

For the “hardness” let L € PSPACE via a Turing machine M that uses
p(n) space for a polynomial p. Let = be a string of length n, n > 0,
whose membership in L we are testing.

Introduce the concept of CANYIELD, where each configuration is
encoded as a binary string of length ¢(n) for some polynomial ¢(n) =
O(p(n)). Let Cy and C' be the unique initial and accepting configuration
of M on z. For a vector of boolean variables X = (XM, ... X)),
write (3X) for (3XM)...(3XD). Also write X = Y for A, ((X® A
Yy v (XY A 7™Y); this also works if X or Y@ is 0 or 1. We will
recursively expand the following expression into a QBF:

CANYIELD(Cy,Cy,q(n)) (i.e., in < 24" steps)
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TOBF is PSPACE-complete (cont’d)

Foreveryt > 0,C,D,|C|=|D|=q(n), CANYIELD(C, D,t) =
(3X, | X[ = q(n)) (VY, Z,|U| = |Z]| = q(n))
(Y =CAZ=X)V(Y =XAZ=D))= CANYIELD(Y, Z,t — 1))]

If t = 0, then for every C, D, |C| = |D| = ¢q(n), CANYIELD(C, D,0)
amounts to:
C' yields D via M'’s transition function

By combining these we get a big formula for x € L,
(3X1, [X1| = q(n)) (VY3, 23, [Ya| = [Z1] = q(n))
(X2, [Xa| = q(n)) (VY2, Z2, [Y2| = [Z2] = ¢q(n))
o (B gy, 1 Xl = q(1)) (WWy(nys Za, [Ya| = | Zo| = q(n)) &,
where ¢ is a formula of variables corresponding to the bits of X’s, Y;’s,
and Z;'s, and constants 0, 1 deriving from Cy and C.

The reduction can be computed in polynomial time in n. [
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Variations of TOBF

In the above proof we can stick in any (within a polynomial bound)
number of dummy variables. Also the formula ¢ at the end can be
converted to a 3CNF by adding new variables. So, we can argue
that adding any of the following restrictions, T'(Q)BF' is still PSPACE-
complete: for PSPACE:

e The formula is in prenex normal form

e The quantifiers are alternating

e The quantifiers start from an 4

e The quantifiers end with an 4

e The formula with the quantifiers eliminated is a 3CNF formula
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Formula Game

Suppose ¢ is a Boolean formula over xq,...,x; without gquantifiers.
Consider the game played by two players in which they take turns,
starting from Player 1, in assigning values to the variables x, xo, - - -, .
In this order. Player 1 wins if the formula evaluates to TRUE for the
assignment and Player 2 wins otherwise.

Define FORMULA-GAME = {¢ | Player 1 can always win for ¢}.

Then this problem is PSPACE-complete. Why? The condition ¢ €
FORMULA-GAME is rewritten as:

(Fz1)(Va2) - - - (Qrzr) P,

where the guantifiers alternate. This is essentially a variation of T'Q)BF'.
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General Geography

Given a directed graph G = (V, F) with a specified node s, consider the
following game played by two players: Initially, xt = s and W = {s}. The
players take turns, beginning with the move by Player 1, in selecting a
node u ¢ W such that (z,u) € E; v is then added to W. A player wins
If the other cannot make a move. This is called General Geography.

Define GG = {(G,s) | Player 1 has a winning strategy in general
geography }.
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General Geography is PSPACE-complete

GG € PSPACE. Let (G,s) be an instance of GG of some n nodes.
Consider the following procedure Search:

e Inputis (V,E,x,W.b),x eV, W CV,be{l,2}.
b= 1,2 means that it is the 1st, 2nd player’s turn to move.

e Find the nodes u1,...,u;r & W to which there is an edge from z.

o If £ =0, output“no” if b =1 and “yes” if b = 2

e If b = 1, output “yes” if Search outputs “yes” on (V, E, u;,, W Uz, 2)
for some 7 and "no” otherwise.

e If b = 2, output “yes” if Search outputs “yes” on (V, £, u;,, W Uz, 1)
for all - and "no” otherwise.

CS280, Lecture 17 10



GG i1s PSPACE-complete (cont’d)

The procedure outputs “yes” on (V, E,s,0,1) if and only if (G, s) € GG.
The recursion depth is at most |V|, so a polynomial space machine can
execute It.
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General Geography is PSPACE-Complete

Consider the version of FORMULA-GAME with the formula in 3CNF,
with an odd number of variables: dxVxs...dror_1Vrordxrori1 dsone.
Reduce the formula to an instance of GG as follows:

.. start

‘ )/b\fﬂ the literal occurrences
rue se
the clauses
El X1 O\ O the ciauses
the Variablesfo the literals
trui/ false
V x 0
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