
NL

CS280, Lecture 18 1



NL-Completeness

A logspace transducer is a TM with a read-only input tape, a write-only
output tape, and a read/write work tape, in which only O(log n) tape
cells of the work tape can be used for input w of length n.

A logspace transducer M computes a function f if for every w, M on
w halts with f(w) on the output tape.

Note: f(w) can occupy at most O(nk) space for some k, since there
are only 2O(log n) configurations of the transducer.

A language A is logspace reducible to B, write A ≤L B, if there is a
logspace computable mapping reduction from A to B.

A language A is NL-complete if A ∈ NL and every B ∈ NL is logspace
reducible to A.

CS280, Lecture 18 2



Properties of logspace reductions

Theorem. If A ≤L B and B ∈ L then A ∈ L.

(Comment: compute just 1 symbol of the reduction function,
as needed. Recording the symbol location takes O(log n) space.)

Theorem. If A ≤L B and B ∈ NL then A ∈ NL.

Corollary. If A is NL-complete and A ∈ L then L = NL.

CS280, Lecture 18 3



NL-complete Problem

Theorem. PATH is NL-complete.

Proof PATH ∈ NL. Given an instance (G, s, t) of PATH with n nodes,

repeat the following n− 1 times with x = s at the beginning:

• Nondeterministically select a node y from 1, . . . , n,

• If (x, y) is in G, then set x to y. If not, reject.

• If y = t, then accept.

This method correctly decides whether (G, s, t) ∈ PATH and requires
O(log n) space.

CS280, Lecture 18 4



PATH is NL-complete (cont’d)

Let A be decided by a nondeterministic c log n space machine N . We

may assume that N has the unique accepting configuration for each

input. Let x be an input of some length n. Define the graph G as follows:

• The nodes of G are the configurations of M on x. Here each

configuration is the concatenation of the state, head positions, and

the work tape contents. (Size ∼ O(log n).)

• s is the initial configuration

• t is the accepting configuration.

• For every pair of nodes u and v, there is an arc from u to v if and

only if v is one of the next possible configurations of u.

Then (G, s, t) ∈ PATH if and only if x ∈ A.

CS280, Lecture 18 5



Computation of (G, s, t) in logspace

Let ` be the encoding length of each configuration, in binary.
Block 1 prints the adjacency matrix, block 2 prints indices of s, t.

for u = 0`, . . . , 1` do
for v = 0`, . . . , 1` do

if u and v are configurations then
if u⇒ v then output 1 else output 0

C ← 0;
for u = 0`, . . . , 1` do

if u is a configuration then
C ← C + 1;
if u = the initial config. then output “s = C”
if u = the accepting config. then output “t = C”

The algorithm works in O(`) = O(log n) space.

CS280, Lecture 18 6



NL = coNL

Theorem. PATH ∈ NL.

Proof Let (G, s, t) be as in the PATH problem, where G has n nodes.
For each i, 0 ≤ i ≤ n, define Ai to be the set of all nodes reachable
from s within i steps and ci =‖ Ai ‖.

Given ci it is possible to nondeterministically enumerate all the nodes in

Ai with the following ENUMERATE(i, ci), in log n space:

1. Set counter d to 0;

2. for j = 0, . . . , n do the following:

(a) guess an s-to-j path of length at most i (node by node);

(b) if successful increment d and output j;

3. if d = ci output “SUCCESSFUL”; otherwise, output “FAILURE”

CS280, Lecture 18 7



Computing ci+1 knowing ci

1. Set counter e to 0; {becomes ci+1, if successful}

2. For j = 0, . . . , n do the following: {Is j ∈ Ai+1? If so, add 1 to e}

(a) Set a variable r to false.

(b) Call ENUMERATE(i, ci). For each node u output by

ENUMERATE, check if u⇒ j; if so, set r to true.

(c) If ENUMERATE has output “FAILURE” at the end output

“FAILURE”.

Otherwise, increment e if and only if r = true.

3. Output e.

CS280, Lecture 18 8



Testing Unreachability

1. Set c0 to 1.

2. For i = 0, . . . , n− 1, compute ci+1 from ci.

(Stop without accepting in case of failure.)

3. (Check if t 6∈ An by calling ENUMERATE(n, cn).) Accept if the

enumeration is “SUCCESSFUL” and t is not output.

The method uses only O(log n) space.

CS280, Lecture 18 9


