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Abstract
Approximate counting via correlation decay is the core algorithmic technique used in the sharp
delineation of the computational phase transition that arises in the approximation of the partition
function of anti-ferromagnetic two-spin models.

Previous analyses of correlation-decay algorithms implicitly depended on the occurrence of
strong spatial mixing. This, roughly, means that one uses worst-case analysis of the recursive
procedure that creates the sub-instances. In this paper, we develop a new analysis method that
is more refined than the worst-case analysis. We take the shape of instances in the computation
tree into consideration and we amortise against certain “bad” instances that are created as the
recursion proceeds. This enables us to show correlation decay and to obtain an FPTAS even
when strong spatial mixing fails.

We apply our technique to the problem of approximately counting independent sets in hyper-
graphs with degree upper-bound ∆ and with a lower bound k on the arity of hyperedges. Liu
and Lin gave an FPTAS for k ≥ 2 and ∆ ≤ 5 (lack of strong spatial mixing was the obstacle
preventing this algorithm from being generalised to ∆ = 6). Our technique gives a tight result
for ∆ = 6, showing that there is an FPTAS for k ≥ 3 and ∆ ≤ 6. The best previously-known
approximation scheme for ∆ = 6 is the Markov-chain simulation based FPRAS of Bordewich,
Dyer and Karpinski, which only works for k ≥ 8.

Our technique also applies for larger values of k, giving an FPTAS for k ≥ 1.66∆. This bound
is not as strong as existing randomised results, for technical reasons that are discussed in the
paper. Nevertheless, it gives the first deterministic approximation schemes in this regime. We
further demonstrate that in the hypergraph independent set model, approximating the partition
function is NP-hard even within the uniqueness regime.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.1 Com-
binatorics

Keywords and phrases approximate counting, independent sets in hypergraphs, correlation de-
cay

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.45

∗ The full version of the paper is available at arxiv.org/abs/1510.09193. The theorem numbering here
matches the full version.

† The research leading to these results has received funding from the European Research Council under the
European Union’s Seventh Framework Programme (FP7/2007-2013) ERC grant agreement no. 334828.
The paper reflects only the authors’ views and not the views of the ERC or the European Commission.
The European Union is not liable for any use that may be made of the information contained therein.

‡ Research supported by NSF grants CCF-0910415 and CCF-1319987.
§ This work was done in part while the authors were visiting the Simons Institute for the Theory of
Computing.

http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.45
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


45:2 Approximation via Correlation Decay When SSM fails

1 Introduction

We develop a new method for analysing correlation decays in spin systems. In particular, we
take the shape of instances in the computation tree into consideration and we amortise against
certain “bad” instances that are created as the recursion proceeds. This enables us to show
correlation decay and to obtain an FPTAS even when strong spatial mixing fails. To the best
of our knowledge, strong spatial mixing is a requirement for all previous correlation-decay
based algorithms. To illustrate our technique, we focus on the computational complexity
of approximately counting independent sets in hypergraphs, or equivalently on counting the
satisfying assignments of monotone CNF formulas.

The problem of counting independent sets in graphs (denoted #IS) is extensively studied. A
beautiful connection has been established, showing that approximately counting independent
sets in graphs of maximum degree ∆ undergoes a computational transition which coincides
with the uniqueness phase transition from statistical physics on the infinite ∆-regular tree.
The computational transition can be described as follows. Weitz [17] designed an FPTAS for
counting independent sets on graphs with maximum degree at most ∆ = 5. On the other
hand, Sly [15] proved that there is no FPRAS for approximately counting independent sets
on graphs with maximum degree at most ∆ = 6 (unless NP = RP). The same connection has
been established in the more general context of approximating the partition function of the
hard-core model [17, 12, 15, 4, 5, 16] and in the even broader context of approximating the
partition functions of generic antiferromagnetic 2-spin models [14, 5, 16, 8] (which includes,
for example, the antiferromagnetic Ising model). As a consequence, the boundary for the
existence of efficient approximation algorithms for these models has been mapped out.

Approximate counting via correlation decay is the core technique in the algorithmic
developments which enabled the sharp delineation of the computational phase transition.
Another standard approach for approximate counting, namely Markov Chains Monte Carlo
(MCMC) simulation, is also conjectured to work up to the uniqueness threshold, but the
current analysis tools that we have do not seem to be powerful enough to show that. For
example, sampling independent sets via MCMC simulation is known to have fast mixing only
for graphs with degree at most 4 [11, 3], rather than obtaining the true threshold of 5.

In this work, we consider counting independent sets in hypergraphs with upper-bounded
vertex degree, and lower-bounded hyperedge size. A hypergraph H = (V,F) consists of a
vertex set V and a set F of hyperedges, each of which is a subset of V . A hypergraph is said
to be k-uniform if every hyperedge contains exactly k vertices. Thus, a 2-uniform hypergraph
is the same as a graph. We will consider the more general case where each hyperedge has
arity at least k, rather than exactly k.

An independent set in a hypergraph H is a subset of vertices that does not contain a
hyperedge as a subset. We will be interested in computing ZH , which is the total number
of independent sets in H (also referred to as the partition function of H). Formally, the
problem of counting independent sets has two parameters – a degree upper bound ∆ and
a lower bound k on the arity of hyperedges. The problem is defined as follows (see also
Section 2 for an equivalent formulation in terms of monotone CNF formulas).

Name #HyperIndSet(k,∆).
Instance A hypergraph H with maximum degree at most ∆ where each hyperedge has

cardinality (arity) at least k.
Output The number ZH of independent sets in H.

Previously, #HyperIndSet(k,∆) has been studied using the MCMC technique by Border-
wich, Dyer, and Karpinski [1, 2] (see also [3]). They give an FPRAS for all k ≥ ∆ + 2 ≥ 5
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and for k ≥ 2 and ∆ = 3. Despite equipping path coupling with optimized metrics obtained
using linear programming, these bounds are not tight for small k. Liu and Lu [9] showed
that there exists an FPTAS for all k ≥ 2 and ∆ ≤ 5 using the correlation decay technique.

Thus, the situation seems to be similar to the graph case – given the analysis tools that
we have, correlation-decay brings us closer to the truth than the best-tuned analysis of
MCMC simulation algorithms. On the other hand, the technique of Liu and Lu [9] does not
extend beyond ∆ = 5. To explain why, we need to briefly describe the correlation-decay-
based algorithm framework introduced by Weitz [17]. The main idea is to build a recursive
procedure for computing the marginal probability that any given vertex is in the independent
set. The recursion works by examining sub-instances with “boundary conditions” which
require certain vertices to be in, or out, of the independent set. The recursion structure is
called a “computation tree”. Nodes of the tree correspond to intermediate instances, and
boundary conditions are different in different branches. The computation tree allows one to
compute the marginal probability exactly but the time needed to do so may be exponentially
large since, in general, the tree is exponentially large. Typically, an approximate marginal
probability is obtained by truncating the computation tree to logarithmic depth so that the
(approximation) algorithm runs in polynomial time. If the correlation between boundary
conditions at the leaves of the (truncated) computation tree and the marginal probability at
the root decays exponentially with respect to the depth, then the error incurred from the
truncation is small and the algorithm succeeds in obtaining a close approximation.

All previous instantiations under this framework require a property called strong spatial
mixing (SSM), which roughly states that, conditioned on any boundary condition on inter-
mediate nodes, the correlation decays (see Section 2.1 in the full version). SSM thus guards
against the worst-case boundary conditions that might be created by the recursive procedure.

Let the (∆− 1)-ary k-uniform hypertree Tk,∆ be the recursively-defined hypergraph in
which each vertex has ∆− 1 “descending” hyperedges, each containing k − 1 new vertices.

I Observation 1. Let k ≥ 2. For ∆ ≥ 6, strong spatial mixing does not hold on Tk,∆.

Observation 1 follows from the fact that the infinite (∆− 1)-ary tree T2,∆ can be embedded
in the hypertree Tk,∆, and from well-known facts about the phase transition on T2,∆.

Observation 1 prevents the generalisation of Liu and Lu’s algorithm [9] so that it applies
for ∆ ≥ 6, even with an edge-size lower bound k. The problem is that the construction
of the computation tree involves constructing intermediate instances in which the arity of
a hyperedge can be as small as 2. So, even if we start with a k-uniform hypergraph, the
computation tree will contain instances with small hyperedges. Without strong spatial
mixing, these small hyperedges cause problems in the analysis. Lu, Yang and Zhang [10]
discuss this problem and say “How to avoid this effect is a major open question whose
solution may have applications in many other problems.” This question motivates our work.

To overcome this difficulty, we introduce a new amortisation technique in the analysis.
Since lack of correlation decay is caused primarily by the presence of small-arity hyperedges
within the intermediate instances, we keep track of such hyperedges. Thus, we track not
only the correlation, but also combinatorial properties of the intermediate instances in the
computation tree. Using this idea, we obtain the following result.

I Theorem 2. There is an FPTAS for #HyperIndSet(3, 6).

Note that #HyperIndSet(2, 6) is NP-hard to approximate due to [15], so our result is tight for
∆ = 6. This also shows that ∆ = 6 is the first case where the complexity of approximately
counting independent sets differs on hypergraphs and graphs, as for ∆ ≤ 5 both admit an
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FPTAS [9]. Moreover, Theorem 2 is stronger than the best MCMC algorithm [2] when ∆ = 6
as [2] only works for k ≥ 8.

We also apply our technique to large k.

I Theorem 3. There exists a constant k0 such that for all positive integers k ≥ k0 and ∆
satisfying k ≥ 1.66∆ there is an FPTAS for the problem #HyperIndSet(k,∆).

In the large k case, our result is worse than that obtained by analysis of the MCMC
algorithm [2] (k ≥ 1.66∆ rather than k ≥ ∆ + 2) but it is incomparable since our algorithm
is deterministic rather than randomised. The reason that our bound is worse is mainly due
to technical difficulty in the analysis that we will explain shortly. In fact, we believe that, in
the long run, analysis of the correlation-decay based algorithm is more likely to reveal the
exact critical threshold than analysis of MCMC simulation, although other new ideas will
probably be required in order to achieve sufficiently precise analysis.

The main technical difficulty in correlation-decay analysis is bounding a function that we
call the “decay rate”. This boils down to solving an optimization problem with (k− 1)(∆− 1)
variables. In previous work (e.g. [13]), this optimization has been solved using a so-called
“symmetrization” argument, which reduces the problem to a univariate optimization via
convexity. However, the many variables represent different branches in the computation tree.
Since our analysis takes the shape of intermediate instances in the tree into consideration,
the symmetrization argument does not work for us, and different branches take different
values at the maximum. This problem is compounded by the fact that the shape of the
sub-tree consisting of “bad” intermediate instances is heavily lopsided, and the assignment of
variables achieving the maximum is far from uniform. Given these problems, there does not
seem to be a clean solution to the optimization in our analysis. Instead of optimizing, we
give an upper bound on the maximum decay rate. In Theorem 2, as k and ∆ are small, the
number of variables is manageable, and our bounds are much sharper than those in Theorem
3. On the other hand, because of this, the proof of Theorem 3 is much more accessible, and
we will use Theorem 3 as a running example to demonstrate our technique.

We also provide some insight on the hardness side. Recall that for graphs it is NP-hard
to approximate #IS beyond the uniqueness threshold (∆ = 6) [15]. We prove that it is
NP-hard to approximate #HyperIndSet(6, 22) (Corollary 29). In contrast, we show in the
full version that uniqueness holds on the 6-uniform ∆-regular hypertree iff ∆ ≤ 28 (Corollary
36). Thus, efficient approximation schemes cease to exist well below the uniqueness threshold
on the hypertree. In fact, we show that this discrepancy grows exponentially in k: for large
k, it is NP-hard to approximate #HyperIndSet(k,∆) when ∆ ≥ 5 · 2k/2 (Theorem 28 and
Corollary 30), despite the fact that uniqueness holds on the hypertree for all ∆ ≤ 2k/(2k)
(Lemma 37 in the full version). Theorem 28 follows from a rather standard reduction to the
hard-core model on graphs. Nevertheless, it demonstrates that the computational-threshold
phenomena in the hypergraph case (k > 2) are different from those in the graph case (k = 2).

As mentioned earlier, there are models where efficient (randomised) approximation
schemes exist (based on MCMC simulation) even though SSM does not hold. In fact, this can
happen even when uniqueness does not hold. A striking example is the ferromagnetic Ising
model (with external field). As [14] shows, there are parameter regimes where uniqueness
holds but strong spatial mixing fails. It is easy to modify the parameters so that even
uniqueness fails. Nevertheless, Jerrum and Sinclair [6] gave an MCMC-based FPRAS that
applies for all parameters and for general graphs (with no degree bounds). It is still an open
question to give a correlation decay based FPTAS for the ferromagnetic Ising model.

We conclude this section by giving an outline of the rest of the paper. In Section 2, we
give some preliminaries. We reformulate #HyperIndSet(k,∆) as the problem of counting
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satisfying assignments in monotone CNF formulas, which will allow us to use the computation
tree of Liu and Lu [9]. In Section 3, we give an overview of our proof approach, describing the
main idea behind our new amortisation technique. In Section 4, we give the main ingredients
which we use to prove Theorem 3 (large k). Section 5 describes the main lemma which yields
Theorem 2 (k = 3). Section 6 gives the formal statements and proofs of the hardness results.

2 Preliminaries: monotone CNF formulas & the computation tree

The problem of counting the independent sets of a hypergraph has an equivalent formulation
in terms of monotone CNF formulas. Given a hypergraph H = (V,F), let C be a Boolean
formula with variable set V . For each hyperedge, construct a clause which is the disjunction
of all variables corresponding to vertices in the hyperedge. Let C be the conjunction of all
such clauses. Note that C is a monotone formula – no variable is negated. Also, independent
sets of H are in one-to-one correspondence with satisfying assignments of C – a variable is
assigned value “true” in an assignment if and only if it is out of the corresponding independent
set. Going the other direction, any monotone CNF formula can be viewed as a hypergraph. In
the technical sections of this paper, we use the monotone CNF formulation and, in particular,
the computation tree of Liu and Lu [9]. Below we give the relevant definitions and notation;
our notation aligns as much as possible with that of [9].

Let C be an instance of a monotone CNF formula. We will denote the set of variables in
C by V and set n := |V |. Variables in V will be denoted by x1, x2, . . . and clauses in C by
c1, c2, . . .. The arity of a clause c will be denoted by |c|, i.e., |c| is the number of variables
appearing in the clause c. We assume throughout that no variable appears twice in the same
clause. For a variable x ∈ V , we denote by dx(C) the number of clauses where x appears.
When x and C are clear from context, we will simply use d to denote dx(C). When C is clear
from context, we will use ∆ to denote maxx∈V dx(C) and we will say that C is a formula
with max degree ∆. Let Ck,∆ be the set of all monotone CNF formulas which have max
degree ∆ and whose clauses have arity at least k. Note that some formulas in Ck,∆ may have
some clauses with arbitrarily large arities.

Our goal is to approximately count the number of satisfying assignments of a formula
C ∈ Ck,∆, which we denote by Z(C). Since C is monotone, an assignment σ : V → {0, 1}
is satisfying if, for every clause in C, there is at least one variable x ∈ c with σ(x) = 1.
Note that Z(C) > 0 since the all-1 assignment satisfies every monotone CNF formula. For
convenience, we will use the simplified notation “x = 1” to denote (the set of) satisfying
assignments of C in which x is set to 1, and we similarly use “x = 0”. We associate the
formula C with a probability distribution in which each satisfying assignment has probability
mass 1/Z(C). We will denote probabilities with respect to this distribution by PrC(·).

Let x be a variable in V . Define R(C, x) := PrC(x=0)
PrC(x=1) , this is well-defined since PrC(x =

1) > 0 by the monotonicity of C. In fact, the monotonicity of C also implies that 0 ≤
R(C, x) ≤ 1, where the upper bound follows from the fact that, for every satisfying assignment
with x = 0, flipping the assignment of x to 1 does not affect satisfiability. Our interest in the
quantity R(C, x) stems from the following simple lemma (the proof follows the argument in
[9, Appendix A] and is given for completeness in the full version).

I Lemma 5. Let k and ∆ be positive integers. Suppose that there is a polynomial-time
algorithm (in n and 1/ε) that takes an n-variable formula C ∈ Ck,∆, a variable x of C, and
an ε > 0 and computes a quantity R̂(C, x) satisfying |R̂(C, x)− R(C, x)| ≤ ε. Then, there
exists an FPTAS which approximates Z(C) for every C ∈ Ck,∆.
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Liu and Lu [9] established that a computation tree approach gives a recursive procedure
for exactly calculating R(C, x) for any monotone CNF formula C and any variable x ∈ C.
We next give the details of this recursive procedure (see [9, Lemma 5]). First, we introduce
the following definitions (see Definitions 6 and 7 in the full version).

We call the variable x forced in C if x appears in a clause of arity 1 in C. We call the
variable x free if x does not appear in any clause of C. We call the clause c redundant in C
if there is a clause c′ in C such that c is a (strict) superset of c′ (note that removing c from
C does not affect the set of satisfying assignments of C). We next give the details of the
computation tree. The nodes in the computation tree will be pairs (C, x) such that

C is a monotone CNF formula and x is a variable which is not forced in C. (1)

Let C, x satisfy (1). We first perform a pre-processing step on C which involves (i) initially
removing all of the redundant clauses, (ii) then, removing all clauses of arity 1. Note that
part (ii) of the preprocessing step removes all forced variables that were present in C; at
the time of the removal, forced variables appear only in clauses of arity 1 since part (i)
of the preprocessing step has already removed all redundant clauses in C (and hence all
clauses of arity greater than 1 that contain forced variables). Denote the formula after the
completion of the preprocessing step by C̃. Note that every clause in C̃ is also a clause in
the initial formula C, so x is not forced in C̃. Further, since removing redundant clauses
does not change the set of satisfying assignments of C, and x is not forced in C, we have
that R(C̃, x) = R(C, x).

If x is free in C̃ (the formula after the pre-processing step), then the start node (C, x) is
(declared) a leaf of the computation tree (note that in this case R(C, x) = 1). In the sequel,
we assume that x is not free in C̃. Denote by {ci}i∈[d] the clauses where x occurs in C̃ and
let wi = |ci| − 1 (note that d ≥ 1). We will use w to denote the vector (w1, . . . , wd). The
variables in clause ci other than x will be denoted by xi,1, . . . , xi,wi . For the pair (C, x),
we next construct pairs (Ci,j , xi,j) for i ∈ [d] and j ∈ [wi], where Ci,j is an appropriate
subformula obtained from C̃, roughly, by hard-coding (some of) the occurrences of the
variables in C̃ to either 1 or 0 (this will be explained below and will henceforth be referred
to as pinning)1.

Precisely, for i ∈ [d], let Ci be the formula obtained from C̃ by removing clauses c1, . . . , ci−1
(note that this has the same effect as pinning the occurrences of x in these clauses to 1) and
pinning the occurrences of x in ci+1, . . . , cd to 0. For j ∈ [wi], the formula Ci,j is obtained
from Ci by further removing clause ci and pinning all the occurrences of xi,1, . . . , xi,j−1 to 0.

In the full version, we prove that the pairs (Ci,j , xi,j) satisfy (1) for all i ∈ [d], j ∈ [wi].
We next state the relation between R(C, x) and the R(Ci,j , xi,j)’s. It is proved in [9, Lemma
5], using a Weitz-type telescopic expansion (see also the full version for the argument), that

R(C, x) =
d∏
i=1

(
1−

wi∏
j=1

R(Ci,j , xi,j)
1 +R(Ci,j , xi,j)

)
. (2)

By applying (2) recursively, it is not hard to see that one can compute the quantity R(C, x)
exactly. Of course, exact computation using this scheme will typically require exponential
time, so as in [9] we will stop the recursion at some (small) depth L to keep the computations
feasible within polynomial time. This will yield a quantity R(C, x, L) and the hope is that,
by choosing L appropriately, the error |R(C, x, L)−R(C, x)| will be sufficiently small.

1 Note that our notation for i, j is different from the one in [9]; there, the roles of i, j are interchanged.
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In light of (2), and analogously to [9], we define R(C, x, L) for integer L ≥ 0 as follows.
Namely, for integer L we set

R(C, x, L) =
{

1, if x is free in C̃ or L ≤ 0,∏d
i=1
(
1−

∏wi
j=1

R(Ci,j ,xi,j ,L−lwi )
1+R(Ci,j ,xi,j ,L−lwi )

)
, otherwise,

(4)

where lwi := dlog6(wi + 1)e (note that l1 = . . . = l5 = 1). The choice of lwi is such that the
size of the computation tree is polynomial for L = O(logn); the particular choice of the
logarithm base in the definition of lwi is not important as long as it is a big enough constant.

Using correlation decay techniques together with a new method to account for the shape
of the computation tree, we will show the following key lemma (proved in Section 5).

I Lemma 10. Let ∆ = 6. There exist constants α, τ with 0 < α < 1 and τ > 0 such that
the following holds for all integers L. Let C be a monotone CNF formula whose clauses all
have arity greater than or equal to 3 and, further, each variable occurs in at most ∆ clauses.
Then, for the quantity R(C, x, L) defined recursively from (4), it holds that

|R(C, x, L)−R(C, x,∞)| ≤ ταL.

In the following section, we give an overview of our approach to proving Lemma 10. We also
prove an analogous lemma in the case where k,∆ are large, see Lemma 11 in Section 4.

Proof of Theorems 2 and 3 assuming Lemmas 10 and 11. Invoke Lemmas 5, 10 and 11
and the reformulation of #HyperIndSet(k,∆) in terms of the monotone CNF problem. J

3 Proof Approach

To prove Lemma 10, the standard approach so far in the literature has been to show that,
for a node (C, x) in the computation tree, the quantity |R(C, x, L)−R(C, x,∞)| is bounded
by αmaxi,j |R(Ci,j , xi,j , L − 1) − R(Ci,j , xi,j ,∞)| for some constant 0 < α < 1 and then,
inductively, to deduce that |R(C, x, L)−R(C, x,∞)| decays exponentially in L. This approach
has been extremely successful when strong spatial mixing holds [14, 8, 9, 13, 18, 10].

In our setting, this inductive approach is problematic since, inside the computation tree,
we are faced with the possibility that the formula at the root of a subtree has many arity-2
clauses. For ∆ ≥ 6, these subtrees prohibit the application of the above proof scheme since
they are in non-uniqueness and hence the desired step-by-step decay is no longer present.

While arity-2 clauses are problematic, clauses with larger arity do at least lead to good
decay of correlation in a single step. Thus, our approach is to do an amortised analysis. In a
single step, we track both the one-step decay of correlation and the immediate creation of
arity-2 clauses, which will later lead to worse decay. More formally, instead of tracking the
quantity R(C, x, L), we track the quantity m(C, x, L) = δb(C)R(C, x, L) where b(C) denotes
the number of arity-2 clauses in the formula C (the “bad” clauses) and δ ∈ (0, 1) is an
appropriate constant. (In fact, in Section 5, we define m(C, x, L) as δb(C)Φ(R(C, x, L)) for
an appropriate function Φ, see (28).)

Crucially, note that the root formula C satisfies |m(C, x, L)−m(C, x,∞)| = |R(C, x, L)−
R(C, x,∞)|, since by the assumption in Lemma 10 we have that b(C) = 0. Thus, the key
step in the proof of Lemma 10 is to show that the quantity |m(C, x, L)−m(C, x,∞)| decays
exponentially with L; we will show that, for some constant α ∈ (0, 1), for an arbitrary node
(C, x) in the computation tree, it holds that

|m(C, x, L)−m(C, x,∞)| ≤ αmaxi,j |m(Ci,j , xi,j , L− 1)−m(Ci,j , xi,j ,∞)|. (5)
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Since arity-2 clauses are the source of problems it is important not to create too many
of them. Therefore, we also have to be careful in the construction of the computational
tree. We achieve this by carefully ordering the clauses that we process at each step to avoid
creating arity-2 clauses as much as possible.

Unfortunately, the quantity m(C, x, L) is more complicated than the plain message
R(C, x, L) which has been studied before since it incorporates combinatorial information
about the formula C and thus it does not satisfy a simple recursion (unlike R(C, x, L)).
Nevertheless, we are able to define a multi-variable quantity κ (see (32)) and to show that
when κ ≤ 1, inequality (5) holds.

The technical details of applying the approach are quite intricate in the context of
Lemma 10. In Section 4, we first apply the approach to the case of large k, where the proof
is (significantly) shorter. There, instead of tracking the number of clauses of arity 2, we track
(roughly) the aggregate arities of the clauses in C. Other than that, the high-level proof
approach is similar to what is described above. In Section 5, we give an outline of the more
difficult proof of Lemma 10.

4 The case of large k

In this section, we show the following lemma. Let c := 0.565 and β ∼ 1.65115 be the solution
to 20.0001cβ = 2× 0.9997(1− cβ)c2.

I Lemma 11. Let β ∼ 1.65 be defined as above. Let k be a sufficiently large positive integer
and let ∆ be a positive integer satisfying k ≥ β∆ + 3. There are real numbers α and τ

satisfying 0 < α < 1 and τ > 0 such that for every C ∈ Ck,∆ and every integer L,

|R(C, x, L)−R(C, x,∞)| ≤ ταL, (6)

where the quantity R(C, x, L) is defined recursively from (4).

To estimate the error |R(C, x, L)−R(C, x,∞)|, we will track a specific quantity m(C, x, L)
which is assigned to each node in the computation tree. Let C be the original monotone
CNF formula and let (N, x) be a node in the computation tree. As explained earlier, each
clause c′ of N is obtained from a clause c of C by pinning a certain number of variables to
0 (possibly none), which effectively is the same as removing those variables. We call these
0-pinnings deficits and let max{0, k − |c′|} be number of deficits of c′. Note that a clause of
arity larger than k is considered to have no deficit, although some variables of it may have
been pinned to 0. Let D(N) =

∑
c′∈N max{0, k − |c′|} denote the total deficits of N . Also

observe that if a clause c of C does not show up in N , it does not contribute any deficits. For
any node (N, x) in the computation tree, let m(N, x, L) := δD(N)R(N, x, L) where δ ∈ (0, 1)
is a constant that we will choose later.

Now let us calculate how the number of deficits changes in one step of the recursion. Let
(N, x) be a node in the computation tree. Note that pinning any variable to 1 will remove
all clauses containing it, and will therefore eliminate all deficits of these clauses. Moreover,
for a clause of arity 2, pinning any of its variables to either 0 or 1 will eliminate the whole
clause due to the preprocessing step. Let b2(N, x) (or simply b2 when N and x are clear
from the context) denote the number of arity-2 clauses containing x in N . In the recursion,
we will always order the clauses so that arity-2 clauses come last. Thus, clauses c1, . . . , cd−b2
each have arity at least 3 and clauses cd−b2+1, . . . , cd each have arity 2. Due to these arity-2
clauses, the deficits in every branch below (N, x) will decrease by at least b2(k − 2).

Now consider an integer i in the range 1 ≤ i ≤ d−b2. Recall that inNi, we pin appearances
of x prior to i to 1, thus eliminating deficits in clauses c1, . . . , ci−1. Together with the removal



I. Bezáková, A. Galanis, L. A. Goldberg, H. Guo, and D. Štefankovič 45:9

of clause ci, these removals decrease the total deficits by
∑i
t=1 max{0, k − 1− wt}, where

wt = |ct| − 1. Let si =
∑i
t=1 max{0, k − 1− wt}. We also pin all appearances of x after i

to 0, increasing the total number of deficits by at most d − i − b2. Here we have a “−b2”
because pinning a variable to 0 in a arity-2 clause does not increase the deficits. Moreover,
in Ni,j , we pin all appearances of j − 1 other variables to 0. Each of these pinnings may
contribute at most ∆− 1 deficits, giving a total increase of at most (∆− 1)(j − 1). Next
consider i ≥ d− b2 + 1. For such an i, clause ci has arity 2, and it is easy to see that deficits
do not increase in the branch corresponding to Ni,j . Also note that the preprocessing steps
do not increase deficits. Hence we have the following upper bounds on D(Ni,j) for i ∈ [d]:

D(Ni,j) ≤
{
D(N)− b2(k − 2)− si + d− i− b2 + (∆− 1)(j − 1) if 1 ≤ i ≤ d− b2,
D(N)− b2(k − 2)− sd−b2 if d− b2 + 1 ≤ i.

(7)

The key to our analysis is to bound the correlation decay of m(C, x, L). We will analyse
the recursion for m(C, x, L) based on that of R(C, x, L). Recall that the recursion for
R(C, x, L) depends on the function F d,w(r) implicitly defined by (4), i.e.,

F d,w(r) :=
d∏
i=1

(
1−

wi∏
j=1

ri,j
1 + ri,j

)
, (8)

where ri,j ∈ [0, 1] for all i ∈ [d], j ∈ [wi] (so R(C, x, L) = F d,w({R(Ci,j , xi,j , L− lwi)})).
For i ∈ [d], the following quantity ρw,i

δ,α will roughly upper bound the sensitivity of
|m(C, x, L)−m(C, x,∞)| to the i-th clause in which x appears in C, or more precisely, to
the quantities |m(Ci,j , xi,j , L− lwi)−m(Ci,j , xi,j ,∞)| for j ∈ [wi]:

ρw,i
δ,α (r) :=

α
−lwi δsi+i−d+b2

∑wi
j=1 δ

−(j−1)(∆−1)
∣∣∣∂Fd,w∂ri,j

∣∣∣ if 1 ≤ i ≤ d− b2,

α−lwi δsd−b2
∣∣∣∂Fd,w∂ri,1

∣∣∣ if d− b2 + 1 ≤ i ≤ d.
(10)

Note that ρw,i
δ,α (r) depends also on ri′,j with i′ 6= i. The decay rate of |m(C, x, L)−m(C, x,∞)|

in terms of L, for all formulas C with max degree ∆, will be captured by the aggregation
of ρw,i

δ,α(r)’s, namely, κd,b2,wδ,α (r) := δb2(k−2)∑d
i=1 ρ

w,i
δ,α(r). The main technical lemma of the

section is the following.

I Lemma 12. For all sufficiently large ∆, for any k ≥ β∆ + 3 where β ∼ 1.65115 is defined
earlier, there exists constants 0 < δ < 1, 0 < α < 1, and U > 0 such that, for all 0 ≤ r ≤ 1,
κd,b2,wδ,α (r) is at most 1 when d ≤ ∆− 1 and at most U when d = ∆.

Before sketching the proof of Lemma 12, let’s show that it is sufficient to imply Lemma 11.

Proof of Lemma 11 (Sketch). Let δ, α be as in Lemma 12. For C ∈ Ck,∆, we haveD(C) = 0,
so |m(C, x, L)−m(C, x,∞)| = |R(C, x, L)−R(C, x,∞)|.

The lemma will thus follow by showing that for every node (N, x) of the computation
tree the quantity |m(N, x, L)−m(N, x,∞)| decays roughly as αL. The proof is by induction
on L; the base cases L ≤ 0 are easy to show since δ ∈ (0, 1). For the induction step, one
needs the following key inequality (obtained by considering the gradient of F d,w):

|m(N, x, L)−m(N, x,∞)| ≤ max
r


( d∑
i=1

wi∑
j=1

δD(N)−D(Ni,j)α−lwi

∣∣∣∣∂F d,w(r)
∂ri,j

∣∣∣∣ )
×

max
i,j

{
αlwi |m(Ni,j , xi,j , L− lwi)−m(Ni,j , xi,j ,∞)|

}
.

(16)
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Our bounds (7) on D(N)−D(Ni,j) for i ∈ [d], j ∈ [wi] imply that the maxr{·} expression
in (16) is upper bounded by maxr κ

d,b2,w
δ,α (r) (since δ ∈ (0, 1)). Thus, by Lemma 12, one

obtains step-wise decay of m(N, x, L). (The case d = ∆ arises only at the root formula.) J

Proof of Lemma 12 (Sketch). Let α = 0.9999 and δ be such that δ∆ = c (recall, c = 0.565).
The proof has two main steps. In the first step, one obtains a bound on κd,b2,wδ,α (r) that

does not depend on r (i.e., we bound the terms which depend on the “messages" R(C, x, L)).
We do this for each clause ci; the bound we obtain depends only on the arity of the clause, or,
for the purposes of this proof, on wi. The second step is then to maximize over the possible
values of the wi’s.

For wi ≥ 2, let µ(wi) := max{2, wi
(
2− 21−wi

)−1}. The result of the first step is the
following bound on κd,b2,wδ,α (r) (note that r is completely eliminated).

κd,b2,wδ,α (r) ≤ δb2(k−2)
( d−b2∑

i=1
α−lwi δsi+i−d+b2−(wi−1)(∆−1)2−wiµ(wi) + α−1b2

)
, (21)

Using the fact that α−lwi ≤ α−1w0.0001
i for any wi ≥ 2, we obtain that, if wi > k − 1,

then the right hand side of (21) increases if we replace wi with k − 1. Henceforth we may
assume that wi ≤ k − 1, which allows us to rewrite si = si−1 + k − 1− wi. Using the fact
that δ∆ = c, we then obtain

ακd,b2,wδ,α (r) ≤ δk+b2(k−1)ηd(w)+b2δ
b2(k−2), ηd(w) :=

d−b2∑
i=1

δsi−1w0.0001
i (2c)−wiµ(wi). (22)

Convexity arguments show that the maximum of ηd(w) is achieved at w = w′, where
w′i = k − 1 for 1 ≤ i ≤ t and w′i = 2 for t+ 1 ≤ i ≤ d− b2 for some 0 ≤ t ≤ d− b2 − 1. We
thus obtain

ηd(w) ≤ ηd(w′) ≤ ∆(k−1)1.0001(2c)−(k−1) (2− 22−k)−1+ 20.0001

2c2(1− δk−3) ≤ 0.9998c−β , (26)

where the last inequality follows from 20.0001

2c2(1−δk−3) ≤
20.0001

2c2 · 1
1−cβ = 0.9997c−β (using the

definition of c, δ) and that for large ∆ and k, we have ∆(k−1)1.0001(2c)−(k−1) (2− 22−k)−1
<

0.0001 (using that 2c > 1 and k ≥ β∆ + 3). Now, plug (26) into (22):

ακd,b2,wδ,α (r) ≤ δb2(k−2) (0.9998 δkc−β + b2
)
≤ cβb2 (0.9998 + b2) ≤ α, (27)

where the last inequality follows from cβ < 1/2. (27) yields κd,b2,wδ,α (r) ≤ 1, as claimed. J

5 A finer analysis to treat k ≥ 3, ∆ = 6

In this section, we describe the main technical ingredient to prove Lemma 10 (which in turn
was critical in deducing Theorem 2 in Section 2).

Let (C, x) be a non-leaf node in the computation tree, where the root node is a monotone
CNF formula with max degree ∆ = 6 all of whose clauses have arity at least k = 3. Denote
by b(C) the total number of clauses of arity 2 in C. Recall that C̃ is the formula obtained
from C after the preprocessing step. Also, c1, . . . , cd are the clauses in which x appears in C̃
and wi = |ci| − 1. We have d ≥ 1 since (C, x) is a non-leaf node and wi ≥ 1 for all i because
of property (1). Let b3 denote the number of clauses such that |ci| = 3 and let b2 denote the
number of clauses such that |ci| = 2.
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When processing the node (C, x), we will order the clauses in which x appears in C̃

so that clauses with |ci| = 3 are processed first. We thus have that d, b2, b3 ∈ Z and
w = (w1, . . . , wd) ∈ Zd satisfy

1 ≤ d, 0 ≤ b2, b3 ≤ d, b2 + b3 ≤ d
wi = 2 for i = 1, . . . , b3, wi ≥ 3 or wi = 1 for i = b3 + 1, . . . , d.

(30)

As already described in Section 3, to prove Lemma 10, we will track a quantity m(C, x, L)
which is assigned to each node in the computation tree. Let η := η(∆) = (1/2)∆. Define
m(C, x, L) by

m(C, x, L) := δb(C) Φ(R(C, x, L)) (28)

where δ ∈ (0, 1], and Φ : [η, 1]→ R satisfies:

Φ is continuously differentiable on [η, 1], and ϕ := Φ′ satisfies ϕ(z) > 0 for z ∈ [η, 1]. (29)

For ∆ = 6, the value of δ will be later chosen to be δ = 9789/10000 and Φ will be specified in
the upcoming equation (46). Also, note that for all nodes (C, x) in the computation tree the
quantity m(C, x, L) is well-defined; this is because of the property (1) and the lower bound
R(C, x, L) ≥ η (follows from (4), see Remark 8 in the full version).

We will show Lemma 10 with α := 1− 10−4. In particular, we aim to show that α upper
bounds the decay rate of |m(C, x, L) −m(C, x,∞)|, i.e., |m(C, x, L) −m(C, x,∞)| decays
roughly as αL (modulo a multiplicative constant). As in the proof of Lemma 11, this yields
Lemma 10 when applied to the root formula of the tree (since it has no arity-2 clauses).

Ler r be a real vector with components ri,j for i ∈ [d] and j ∈ [wi], 0 ≤ r ≤ 1. For i ∈ [d],
we will use the following analogue of the quantity ρw,i

δ,α (r) defined in Section 4 (see (10)):

ρw,i
δ,Φ,α(r) := α−lwi

wi∑
j=1

(
1
δ

)(j−1)(∆−1) 1
ϕ(ri,j)

∣∣∣∣∂F d,w∂ri,j

∣∣∣∣ , (31)

where recall that the function F d,w(r) gives the recursion (4) that R(·, ·, ·) satisfies (cf. (8)).
Once again, the quantity ρw,i

δ,Φ,α(r) will roughly upper bound the sensitivity of |m(C, x, L)−
m(C, x,∞)| to the quantities |m(Ci,j , xi,j , L)−m(Ci,j , xi,j ,∞)| for j ∈ [wi]. The decay rate
of |m(C, x, L)−m(C, x,∞)| will be captured by the following quantity:

κd,b2,b3,wδ,Φ,α (r) := ϕ(F d,w(r)) δb2
( b3∑
i=1

(1
δ

)b3−i
ρw,i
δ,Φ,α(r) +

d∑
i=b3+1

ρw,i
δ,Φ,α(r)

)
. (32)

Finally, we specify the function Φ. For z ∈ (0, 1], let

Φ(z) := 1
χψ

log
(

zχ

ψ − zχ

)
with χ = 1/2, ψ = 13/10, so ϕ(z) = Φ′(z) = 1

z(ψ − zχ) . (46)

Our main technical lemma is the following (proved in Section 6 of the full version).

I Lemma 14. Let ∆ = 6, χ = 1/2, ψ = 13/10, δ = 9789/10000, α = 1 − 10−4 and Φ be
defined from (46). There exists a constant U > 0 such that, for all d, b,w satisfying (30),
for all (1/2)∆−11 ≤ r ≤ 1, it holds that κd,b2,b3,wδ,Φ,α (r) is at most 1 when d ≤ ∆ − 1 and at
most U when d = ∆.
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Lemma 10 can be derived from Lemma 14 using an argument analogous to the one used to
derive Lemma 11 from Lemma 12, see Section 5 in the full version for the details.

The proof of Lemma 14 is significantly harder however than the proof of Lemma 12. For
one thing, the analysis has to account for the (irrational) function ϕ (without which the
step-wise contraction is simply not true) present in the expression for κd,b2,b3,wδ,Φ,α (r). Further,
the two-step procedure that we followed in the proof of Lemma 12, that is, maximising first
over r and then maximising over w, is far too crude. Instead, we need to slowly reduce
the number of the variables akin to the approach in [9]. In our case, however, to bound
tightly the contribution of δ, we need to prove asymmetric inequalities in several variables
with irrational expressions (see the key Lemmas 15, 19 and 20 in the full version). To keep
the length of the paper reasonable and easier to read through, we rigorously verify certain
two-variable inequalities using a computer; as the reader will notice, in some cases, even
reducing to such two-variable inequalities requires a significant analytical effort (see the
proofs of the aforementioned lemmas, for example).

6 Hardness Results

We prove the hardness results stated in the Introduction. We will work with the problem
#HyperIndSet(k,∆) (instead of the monotone CNF formulation). The proof is via a reduction
to the independent set model on graphs which was used by Bordewich et al. [2]. The precise
inapproximability results for the hard-core model had not yet been proved at the time [2] was
written, so we carry out the details explicitly to obtain the bound that their reduction gives.

We use the inapproximability result of Sly and Sun [16] for the hard-core model. Recall,
for a graph G = (V,E), the partition function of G in the hard-core model with parameter
λ > 0 is given by ZG(λ) :=

∑
I λ
|I| where the sum ranges over all independent sets I of G.

I Theorem 27 ([16]). For ∆ ≥ 3, let λc(∆) := (∆− 1)∆−1/(∆− 2)∆. For all λ > λc(∆), it
is NP-hard to approximate ZG(λ) on ∆-regular graphs G, even within an exponential factor.

I Theorem 28. Let k ≥ 2, ∆ ≥ 3 be integers. Suppose that 2dk/2e − 1 < (∆−2)∆

(∆−1)∆−1 . Then,
it is NP-hard to approximate #HyperIndSet(k,∆), even within an exponential factor.

Proof (Sketch). Let λ := 1/(2dk/2e − 1). Let G be a ∆-regular n-vertex graph. Construct
a hypergraph H by replacing every vertex of G by a (distinct) set of dk/2e vertices and
place a hyperedge among the corresponding sets of vertices for each edge of G. Then
ZH = (2dk/2e − 1)n ZG(λ), from which the theorem easily follows (see full version for
details). J

I Corollary 29. Let k = 6, ∆ = 22. It is NP-hard to approximate #HyperIndSet(k,∆).

I Corollary 30. Let k ≥ 2. For ∆ ≥ 5·2k/2, it is NP-hard to approximate #HyperIndSet(k,∆).
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