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Abstract
We study the problem of approximating the value of the matching polynomial on graphs with edge
parameter γ, where γ takes arbitrary values in the complex plane.

When γ is a positive real, Jerrum and Sinclair showed that the problem admits an FPRAS on
general graphs. For general complex values of γ, Patel and Regts, building on methods developed by
Barvinok, showed that the problem admits an FPTAS on graphs of maximum degree ∆ as long as γ
is not a negative real number less than or equal to −1/(4(∆− 1)). Our first main result completes
the picture for the approximability of the matching polynomial on bounded degree graphs. We show
that for all ∆ ≥ 3 and all real γ less than −1/(4(∆− 1)), the problem of approximating the value of
the matching polynomial on graphs of maximum degree ∆ with edge parameter γ is #P-hard.

We then explore whether the maximum degree parameter can be replaced by the connective
constant. Sinclair et al. showed that for positive real γ it is possible to approximate the value of
the matching polynomial using a correlation decay algorithm on graphs with bounded connective
constant (and potentially unbounded maximum degree). We first show that this result does not
extend in general in the complex plane; in particular, the problem is #P-hard on graphs with
bounded connective constant for a dense set of γ values on the negative real axis. Nevertheless, we
show that the result does extend for any complex value γ that does not lie on the negative real axis.
Our analysis accounts for complex values of γ using geodesic distances in the complex plane in the
metric defined by an appropriate density function.
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1 Introduction

We study the problem of approximating the matching polynomial of a graph. This polynomial
has a parameter γ, called the edge activity. A matching of a graph G is a set M ⊆ E(G)
such that each vertex v ∈ V (G) is contained in at most one edge in M . We denote byMG

the set of all matchings of G. The matching polynomial ZG(γ) is given by

ZG(γ) =
∑

M∈MG

γ|M |.

This polynomial is also referred to as the partition function of the monomer-dimer model in
statistical physics.

Here is what is known about approximating this polynomial. We first describe the
case where γ is positive and real. This is a natural case, and is the case where the first
complexity-theoretic results were obtained. We next describe the more general case, where γ
is a complex number. There are many reasons for considering the more general case. The
parameter γ is defined to be complex, rather than real, in the classic paper of Heilmann
and Lieb [8]. Furthermore, it has recently been shown [15] that the quantum evolution of a
system originally in thermodynamic equilibrium is equivalent to the partition function of the
system with a complex parameter. As [15] explains, recent discoveries in physics make it
possible to study thermodynamics in the complex plane of physical parameters – so complex
parameters are increasingly relevant. As we will see in this paper, it is beneficial to study
partition functions with complex parameters even when one is most interested in the real
case – the reason is that the generalisation sheds light on “what is really going on” with
complexity bottlenecks, and on appropriate potential functions. Here is the summary of
known results in both cases.

When the edge activity γ is a positive real number: For any positive real
number γ, Jerrum and Sinclair [9, Corollary 4.4] gave an FPRAS for approximating
ZG(γ). Using the correlation decay technique, Bayati et al. [3] gave a (deterministic)
FPTAS for the same problem for the case in which the degree of the input graph G is at
most a constant ∆.
When the edge activity γ is a complex number: Known results are restricted
to the case where γ is not a real number less than or equal to −1/(4(∆− 1)). In this case,
there is a positive result, due to Patel and Regts [11]. Using a method of Barvinok [1, 2]
for approximating a partition function by truncating its Taylor series (in a region where
the partition function has no zeroes), Patel and Regts [11, Theorem 1.2] extended the
positive result of Bayati et al. to the case in which γ is a complex number that is not
a negative real that is less than −1/(4(∆ − 1)), see also [2, Section 5.1.7]). Patel and
Regts obtained a polynomial time algorithm (rather than a quasi-polynomial time one)
by developing clever methods for exactly computing coefficients of the Taylor series.
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Our first contribution completes this picture by showing that for all ∆ ≥ 3 and all real
γ < −1/(4(∆− 1)) it is actually #P-hard to approximate ZG(γ) on graphs with degree at
most ∆. We use the following notation to state our result more precisely. We consider the
problems of multiplicatively approximating the norm of ZG(γ), and of computing its sign.
Our first theorem shows that, for all ∆ ≥ 3 and all rational numbers γ < −1/(4(∆ − 1)),
it is #P-hard to approximate |ZG(γ)| on bipartite graphs of maximum degree ∆ within a
constant factor.

I Theorem 1. Let ∆ ≥ 3 and γ < − 1
4(∆−1) be a rational number. Then, it is #P-hard to

approximate |ZG(γ)| within a factor of 1.01 on graphs G of maximum degree ∆, even when
restricted to bipartite graphs G with ZG(γ) 6= 0.

The number 1.01 in Theorem 1 is not important. It can be replaced with any constant
greater than 1. In fact, for any fixed ε > 0, the theorem, together with a standard powering
argument, shows that it is #P-hard to approximate ZG(γ) within a factor of 2|V (G)|1−ε .

Our second theorem shows that it is #P-hard to compute the sign of ZG(γ) on bipartite
graphs of maximum degree ∆.

I Theorem 2. Let ∆ ≥ 3 and γ < − 1
4(∆−1) be a rational number. Then, it is #P-hard

to decide whether ZG(γ) > 0 on graphs G of maximum degree ∆, even when restricted to
bipartite graphs G with ZG(γ) 6= 0.

We next explore whether the bound on the maximum degree of G can be relaxed to a
restriction on average degree. The notion of average degree that we use is the connective
constant. Given a graph G, and a vertex v, let NG(v, k) be the number of k-edge paths in G
that start from v. The following definition is taken almost verbatim from [13, 14].1

I Definition 3 ([13, 14]). Let F be a family of finite graphs and let ∆, a and c be positive
real numbers. The connective constant of F is at most ∆ with profile (a, c) if, for any
graph G = (V,E) in F and any vertex v in G, it holds that

∑`
k=1NG(v, k) ≤ c∆` for all

` ≥ a log |V |.

Sinclair, Srivastava, Štefankovič and Yin [13, Theorem 1.3] showed that, for fixed ∆, when
γ is a positive real, the correlation decay method gives an FPTAS for approximating ZG(γ)
on graphs G with connective constant at most ∆ (without any bound on the maximum
degree of G). The run-time of their algorithm is (n/ε)O(

√
γ∆ log ∆), where n is the number of

vertices of G and ε is the relative error.
Our next result shows that, in striking contrast to the bounded-degree case, the algorithmic

result of Sinclair et al. cannot be extended to negative reals, even if γ ≥ −1/(4(∆ − 1)).
Given positive real numbers a and c and a real number ∆ > 1, let F∆,a,c be the set of graphs
with connective constant at most ∆ and profile (a, c).

I Theorem 4. There exist a dense set of values γ on the negative real axis such that the
following holds for any real numbers ∆ > 1 and all a, c > 0.
1. It is #P-hard to approximate |ZG(γ)| within a factor 1.01 on graphs G ∈ F∆,a,c,
2. it is #P-hard to decide whether ZG(γ) > 0 on graphs G ∈ F∆,a,c.
Both of these results hold even when restricted to bipartite graphs G with ZG(γ) 6= 0.

1 The only difference between Definition 3 and the corresponding definitions in [13, 14] is the addition of
the terminology “profile (a, c)” which will be used to state our hardness results in a strong form (the
results in [13, 14] were algorithmic which is why this handle on the constants a and c was not required).



22:4 The Complexity of Approximating the Matching Polynomial in the Complex Plane

The algorithmic contribution of our paper is to show that, despite the hardness result
of Theorem 4, correlation decay gives a good approximation algorithm for any complex
value γ that does not lie on the negative real axis when the input graph has bounded
connective constant. It is interesting that we are able to use correlation decay to get a good
approximation for all non-real complex values γ. Our result is the only known approximation
in this setting. In particular, it is not known how to obtain such a result using the method of
Patel and Regts [11]. In order to describe our result, we use the following notation. Given a
complex number x, let arg(x) denote the principal value of its argument in the range [0, 2π)
and |x| denote its norm. Our result is the following.

I Theorem 5. Let ∆, a and c be positive real numbers and let γ ∈ C \R<0 be any fixed edge
activity. Then there is an algorithm which takes as input an n-vertex graph G ∈ F∆,a,c and
a rational ε ∈ (0, 1) and produces an output Ẑ = ZG(γ)ez for some complex number z with
|z| ≤ ε. The running time of the algorithm is (ĉn/ε)O

(
(1+a+

√
|γ̂|∆) log ∆

)
where γ̂ = 2|γ|

1+cos(argγ)
and ĉ = max{1, c}.

Theorem 5 gives an algorithmic result which contrasts with the hardness results of
Theorems 1 and 2. It has the following corollary.

I Corollary 6. Let ∆, a and c be positive real numbers and let γ ∈ C \R<0 be any fixed edge
activity. Then, for any rational K > 1 and any positive rational ρ, there are polynomial-
time algorithms to take as input a graph G ∈ F∆,a,c and approximate |ZG(γ)| within a
multiplicative factor of K and arg(ZG(γ)) within an additive error ρ.

In order to prove Theorem 5, showing correlation decay for complex γ, we use geodesic
distances in the complex plane in the metric defined by an appropriate density function.
Correlation decay for complex activities has been analysed in the context of the hard-core
model (see Harvey, Srivastava and Vondrák [7])2. The region in the complex plane in which
the authors of [7] worked allowed them to measure distances using the norm instead of
requiring geodesic distances. An alternative approach was given by Peters and Regts [12],
again in the context of the hard-core model, where they showed contraction within the basin
of an attracting fixpoint using the theory of complex dynamical systems.

2 Preliminaries

Let γ be a complex number and G = (V,E) be an arbitrary graph. Recall thatMG is the
set of matchings of G. For a matching M ∈MG, we denote by ver(M) the set of matched
vertices in the matching M . For a vertex u in G, we also define

ZG,u(γ) :=
∑

M∈MG;u∈ver(M)

γ|M | and ZG,¬u(γ) :=
∑

M∈MG;u/∈ver(M)

γ|M |.

Thus, ZG,u(γ) is the contribution to the partition function ZG(γ) from those matchings
M ∈MG such that u is matched in M , while ZG,¬u(γ) is the contribution to the partition
function ZG(γ) from those matchings M ∈MG such that u is not matched in M .

We will use the following result about the location of the zeroes of the matching polynomial.

2 Note that Harvey et al were actually working with the mutivariate hard-core polynomial – this causes
interesting complications which will not be relevant for this paper. They also extend their method
(for the hard-core polynomial, in their region) to graphs of unbounded degree that have bounded
connective constant.
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I Theorem 7 ([8], see, e.g., [2, Theorem 5.1.2]). Let ∆ ≥ 3 be an integer and G be a graph of
maximum degree ∆. Then, for all complex γ that do not lie on the interval (−∞,− 1

4(∆−1) )
of the negative real axis, it holds that ZG(γ) 6= 0.

I Corollary 8. Let ∆ ≥ 3 be an integer and γ > − 1
4(∆−1) be a real number. Then, for all

graphs G of maximum degree ∆ it holds that ZG(γ) > 0.

For our approximation algorithm of Theorem 5, given a graph G = (V,E) with ZG(γ) 6= 0
and a vertex v ∈ V , we will be interested in the quantity

pv(G, γ) := ZG,¬v(γ)/ZG(γ).

The algorithm will be based on the following result by Godsil.

I Theorem 9 ([6]). Let γ ∈ C\R<0. Let G = (V,E) be a graph and let v ∈ V be one of its
vertices. Let TSAW (v,G) be the self-avoiding walk tree of G rooted at v. Then,

pv(G, γ) = pv(TSAW (v,G), γ).

3 FPTAS for graphs with bounded connective constant

In this section, we prove Theorem 5. Consider γ ∈ C\R<0.
We will use the correlation decay technique of Weitz [16], which we adapt for use with

complex activities. We review the basic idea behind the technique (see, e.g., [3, 14, 13]). For
a graph G (of bounded connective constant), we first express ZG(γ) as a telescoping product

ZG(γ) = 1/
n∏
i=1

pvj (Gj , γ) (1)

where v1, . . . , vn is an arbitrary enumeration of the vertices of the graph G and Gj is the graph
obtained from G by deleting the vertices v1, . . . , vj . In light of (1), we can therefore focus
on approximating the value pv(G, γ) for a graph G and vertex v. Using Godsil’s Theorem
(cf. Theorem 9), it in turn suffices to approximate pv(TSAW (v,G), γ). This might seem as a
somewhat simpler task given that TSAW (v,G) is a tree; the caveat however is that the tree
TSAW (v,G) is prohibitively large, so in order to be able to perform computations efficiently
we need to truncate the tree. The correlation decay technique analyses the approximation
error introduced by this truncation process by recursively tracking the error using tree
recurrences.

In the case of matchings, for a tree T and a vertex v in T , we can write a recursion for
pv(T, γ) as follows. If v is the only vertex in T , then pv(T, γ) = 1 (since the only possible
matching is the empty set and thus ZT,¬v(γ) = ZT (γ) = 1). Otherwise, let T1, . . . , Td be the
trees of T\{v} and let v1, . . . , vd be the neighbours of v in T1, . . . , Td, respectively. Then, we
have that

ZT,¬v(γ) =
d∏
i=1

ZTi(γ), ZT (γ) =
d∏
i=1

ZTi(γ) +
d∑
i=1

γ ZTi,¬vi(γ)
∏

j∈{1,...,d},j 6=i

ZTj (γ)

and therefore

pv(T, γ) = ZT,¬v(γ)
ZT (γ) = 1

1 + γ
∑d
i=1

ZTi,¬vi (γ)
ZTi (γ)

= 1
1 + γ

∑d
i=1 pvi(Ti, γ)

.
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Hence, we need to evaluate the recurrence

x = F (x1, . . . , xd) where F (x1, . . . , xd) = 1
1 + γ

∑d
i=1 xi

, (2)

with base case x = 1.
To show the decay of correlations, one wants to show that after applying the recurrence

starting from two different sets of values at v1, . . . , vd, the two computed values at v will be
“closer” than were the initial values at the vi’s. This leads us to define a notion of distance.
Often straightforward distances do not suffice to show decay of correlations, and distances
defined via a “potential” function are used. We adapt this notion to the complex plane.

3.1 Metrics for measuring the error in the complex plane
We use a distance metric based on conformal density functions (see [10] for details).

I Definition 10 (Length, Distance, Metric). Let U be a simply connected open subset of C
and let Φ : U → R>0 be a function (called conformal density). The length with respect to Φ
of a path3 η : [0, 1]→ U is defined as∫ 1

0
Φ(η(t))

∣∣∣ ∂
∂t
η(t)

∣∣∣ dt.
The distance with respect to Φ between two points x, y ∈ U , denoted distΦ(x, y), is the
infimum of the lengths of the paths η connecting x to y (that is, η(0) = x and η(1) = y). We
will refer to the metric induced by the distance function distΦ(·, ·) as the (conformal) metric
given by Φ.

We first quantify one-level correlation decay.

I Lemma 12. Let U be a simply connected open subset of C, Φ : U → R>0 be a conformal
density function, and distΦ(·, ·) be the metric given by Φ. Let p and q be conjugate exponents,
that is, 1/p+ 1/q = 1, where p, q ∈ R>0 ∪ {∞}.

Suppose that d ≥ 1 is an integer and F : Ud → U is a holomorphic map. Let x1, . . . , xd ∈
U and y1, . . . , yd ∈ U and let x = F (x1, . . . , xd) and y = F (y1, . . . , yd). Assume that there
exists a real α ∈ (0, 1) such that for any z1, . . . , zd ∈ U

d∑
i=1

∣∣∣Φ(F (z1, . . . , zd))
∂F

∂zi
(z1, . . . , zd)

1
Φ(zi)

∣∣∣p ≤ αp. (3)

Then

distΦ(x, y) ≤ α
(

d∑
i=1

distΦ(xi, yi)q
)1/q

. (4)

Proof. Let ε > 0. For i ∈ [d], let ηi be a path connecting xi to yi of length `i ≤ distΦ(xi, yi)+ε.
We assume w.l.o.g. that ηi is re-parameterized to uniform speed (using arc length), that is,
for a.e. t ∈ [0, 1] we have∣∣∣∣ ∂∂tηi(t)

∣∣∣∣Φ(ηi(t)) = `i. (5)

3 Following [10], paths are assumed to be continuous and piecewise continuously differentiable.
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We now define a path η connecting x to y:

η(t) := F (η1(t), . . . , ηd(t)).

Let L denote the length of η and Fi(x1, . . . , xd) denote the function ∂F
∂xi

(x1, ..., xd) Then,
using the triangle inequality and (5), we have

L =
∫ 1

0
Φ(η(t))

∣∣∣ ∂
∂t
η(t)

∣∣∣ dt =
∫ 1

0
Φ(η(t))

∣∣∣ d∑
i=1

Fi(η1(t), . . . , ηd(t))
∂ηi
∂t

(t)
∣∣∣ dt

≤
∫ 1

0
Φ(η(t))

d∑
i=1

∣∣∣Fi(η1(t), . . . , ηd(t))
∂ηi
∂t

(t)
∣∣∣ dt

=
∫ 1

0

d∑
i=1

∣∣∣Φ(η(t))Fi(η1(t), . . . , ηd(t))
1

Φ(ηi(t))
`i

∣∣∣ dt.
(6)

By Hölder’s inequality and condition (3), for any t ∈ [0, 1], we have

d∑
i=1

∣∣∣Φ(η(t))Fi(η1(t), . . . , ηd(t))
1

Φ(ηi(t))
`i

∣∣∣ ≤
(

d∑
i=1

∣∣∣Φ(η(t))Fi(η1(t), . . . , ηd(t))
1

Φ(ηi(t))

∣∣∣p)1/p( d∑
i=1

`qi

)1/q

≤ α
( d∑
i=1

`qi

)1/q
.

Integrating this for t between 0 and 1 and combining with (6), we obtain

distΦ(x, y) ≤ L ≤ α
( d∑
i=1

`qi

)1/q
.

Taking ε→ 0 we obtain

distΦ(x, y) ≤ α
(

d∑
i=1

distΦ(xi, yi)q
)1/q

. J

Now, given a rooted tree, our goal will be to bound the correlation decay at the root
when we truncate the tree at depth Θ(logn). Let T be a finite tree rooted at a vertex ρ and
let C be a subset of the leaves of T . Let U ⊆ C. We will have a family of maps {Fd}d≥1
where Fd : Ud 7→ U will be a symmetric map of arity d (which will be the recurrence applied
to a vertex of the tree with d children). Let σ : C → U be an arbitrary assignment of values
in U to the vertices of C. Let also u0 ∈ U be the “initial” value (u0 corresponds to the
starting point of the recurrences). For a vertex v in T and an initial value u0 ∈ U , we define
the quantity rv(C, σ, u0) recursively as follows.

rv(C, σ, u0) =


u0 if v is a leaf of T and v /∈ C,
σ(v) if v ∈ C,
Fd(x1, . . . , xd) otherwise, where xi = rvi(C, σ, u0)

and v1, . . . , vd are v’s children in T .

(7)

We can now study the sensitivity of rv(C, σ, u0) to the assignment σ. The following lemma
is the analogue of [14, Lemma 3] for the complex plane and will be used to apply the
correlation decay technique for graphs of bounded connective constant, the proof can be
found in the full version.
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I Lemma 13. Let U be a simply connected open subset of C and Φ : U → R>0 be a conformal
density function. For d = 1, 2, . . . , let Fd : Ud 7→ U be symmetric holomorphic maps. Suppose
that there exists a real α ∈ (0, 1) and conjugate exponents p and q such that for every integer
d ≥ 1 and all z1, . . . , zd ∈ U it holds that

d∑
i=1

∣∣∣Φ(Fd(z1, . . . , zd))
∂Fd
∂zi

(z1, . . . , zd)
1

Φ(zi)

∣∣∣p ≤ αp. (8)

Then, the following holds for any initial value u0 ∈ U and any finite tree T rooted at ρ.
Let C be a subset of the leaves of T and consider two arbitrary assignments σ1 : C → U

and σ2 : C → U . Then

|rρ(C, σ1, u0)− rρ(C, σ2, u0)| ≤
(
M

L

)(∑
v∈C

αq·depth(v)
)1/q

,

where L := infx∈U Φ(x), M := maxv∈C distΦ(σ1(v), σ2(v)) and depth(v) is the distance of v
from the root ρ.

3.2 Applying the method for matchings
Suppose that γ ∈ C \ R≤0. We will parameterise γ as

γ = (1/Q)2, where we choose Q such that Re(Q) > 0. (9)

Note that, in the choice of Q, we used the assumption that γ is not a negative real number.
Let H be the right complex half-plane, that is, the set of complex x such that Re(x) > 0,
and note that Q ∈ H. We will also transform the space in which the quantities pv(G, γ) live
using the map x 7→ x/Q. In the transformed space, the recurrence (2) becomes

y = F (y1, . . . , yd) where F (y1, . . . , yd) = 1
Q+

∑d
i=1 yi

, (10)

where if y corresponds to a leaf then y = 1/Q (we refer to this y as the initial y). Let

U =
{
y ∈ C | Re(y) > 0, |y| < 1/Re(Q)

}
. (11)

The following lemma shows that the set U is closed under application of the recurrence (10).

I Lemma 14. Suppose that y1, . . . , yd ∈ U and Re(Q) > 0. Then, for y given by (10), we
have that y ∈ U as well. In fact, we have that Re(y) ≥ Re(Q)(

|Q|+ d
Re(Q)

)2 .

We next go on to show the required contraction properties for an appropriate function Φ.
This is largely based on arguments from [13] from the real case, which we can adapt to the
complex plane to obtain the following.

I Lemma 16. Let ∆ be a positive real number, γ ∈ C \R<0, and Q,U be given from (9) and
(11), respectively. Consider the function Φ : U 7→ R>0 given by Φ(y) = 1

Re(y)(2/Re(Q)−Re(y))

and let γ̂ = 2|γ|
1+cos(argγ) ,

D = max{∆, 3
4γ̂ }, p = 1/(1− 1√

1 + 4γ̂D
), q = p

p− 1 , α = 1
D1/q

(
1− 2

1 +
√

1 + 4γ̂D

)
.

(12)
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Then, the following holds for all integer d ≥ 1.
Consider the map F : Ud 7→ U given by F (y1, . . . , yd) = 1

Q+
∑d

i=1
yi
. Then, for arbitrary

y1, . . . , yd ∈ U we have

d∑
i=1

∣∣∣Φ(F (y1, . . . , yd))
∂F

∂yi
(y1, . . . , yd)

1
Φ(yi)

∣∣∣p ≤ αp. (13)

Based on the above lemmas, we can now give a proof sketch of Theorem 5.

Proof Sketch of Theorem 5. If γ is a non-negative real number, then the result follows
from [13, Theorem 1.3]. So we focus on the case where γ is not real. Using the telescoping
expansion of ZG(γ) described in (1), it suffices to give an algorithm that on an input graph
G ∈ F∆,a,c, a vertex v in G and rational δ > 0 outputs in time (ĉn/δ)O

(
(1+a+

√
|γ̂|∆) log ∆

)
a

quantity p̃ which satisfies p̃ = pv(G, γ)ez for some complex number z with |z| ≤ δ.
Let T = TSAW (v,G) be the self-avoiding walk tree rooted at v, then by Theorem 9 we

have that pv(G, γ) = pv(T, γ), so it suffices to approximate pv(T, γ). For this, we apply the
general framework of Lemma 13 to the recurrence in (10) using the contraction properties
proved in Lemma 16. More precisely, we first truncate the tree T at logarithmic depth `
to obtain a tree T ′ and we output p̂ = pv(T ′, γ) as our approximation to pv(T, γ). Note
that T ′ has size at most c∆` since G has connective constant at most ∆. We then invoke
Lemmas 13 and 16 to show that the absolute error between pv(T, γ) and pv(T ′, γ) decays as
(∆1/qα)` where α < 1/∆1/q is the constant in Lemma 16. By taking ` = Θ(logn), we can
therefore make the absolute error as small as an inverse polynomial in n. The absolute error
can then be translated to the desired relative error between p̂ and pv(G, γ) using the bound
in Lemma 14. J

4 Proof of hardness results

Let γ0 = −1/10 and G be the set of graphs of maximum degree 3. It is well-known [5,
Theorem 3] that the problem of exactly computing ZG(γ0) given an input graph G ∈ G is
#P-hard. Moreover, by Corollary 8 we have that ZG(γ0) > 0 for all graphs G ∈ G.

Using an oracle on graphs H of maximum degree ∆ for either approximating ZH(γ)
multiplicatively or deciding the sign of ZH(γ), we will design a polynomial time algorithm to
exactly compute the ratio ZG(γ0)

ZG−e∗ (γ0) for an arbitrary graph G ∈ G and an arbitrary edge e∗

of G; note that this ratio is well-defined since ZG−e∗(γ0) > 0. With such a subroutine at
hand, we can compute ZG(γ0) using self-reducibility techniques; namely, let e1, e2, . . . , em
be an enumeration of the edges of G and let Gi be the graph where the edges ei, . . . , em
are deleted (note that Gm+1 = G and G1 is the empty graph). Then, we have that
ZG(γ0) =

∏m
i=1

ZGi+1 (γ0)
ZGi (γ0) . This yields the #P-hardness results of Theorems 1 and 2.

The most difficult part of designing the subroutine is constructing graph gadgets that
have the effect of “changing” the edge activity γ to any desired activity, perhaps with
some small error. It is actually important to make the error exponentially small relative
to the size of the graph. To formalise these gadget constructions, we will need some
definitions. Let G = (V,E) be a graph and u, v ∈ V . Analogously to the notation ZG,u(γ)
and ZG,¬u(γ) of Section 2, we let ZG,u,v(γ) be the contribution to the partition function
ZG(γ) from those matchings M ∈MG such that both u, v are matched in M , and we define
ZG,u,¬v(γ), ZG,¬u,v(γ), ZG,¬u,¬v(γ) similarly.
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I Definition 17. Fix a real number γ. Given γ, the graph G = (V,E) is said to implement
the edge activity γ′ ∈ R with accuracy ε > 0 if there are vertices u, v in G such that
ZG,¬u,¬v(γ) 6= 0 and
1. u, v have degree one in G and (u, v) /∈ E,

2.
∣∣∣ ZG,u,¬v(γ)
ZG,¬u,¬v(γ)

∣∣∣ ≤ ε, ∣∣∣ ZG,¬u,v(γ)
ZG,¬u,¬v(γ)

∣∣∣ ≤ ε,
3.
∣∣∣ ZG,u,v(γ)
ZG,¬u,¬v(γ) − γ

′
∣∣∣ ≤ ε.

We call u, v the terminals of G. If both of Items 2 and 3 hold with ε = 0, we say that G
implements the edge activity γ′ (perfectly).

I Definition 18. Let α be a rational number and write α = p/q, where p, q are integers such
that gcd(p, q) = 1. Then, the size of α, denoted by size(α), is given by 1 + log(|p|+ |q|). For
α1, . . . , αt ∈ Q, we denote by size(α1, . . . , αt) the total of the sizes of α1, . . . , αt.

Our key lemma for designing the subroutine is the following.

I Lemma 19. Let ∆ ≥ 3 be an integer and γ < − 1
4(∆−1) be a rational number.

There is an algorithm which, on input rational γ′ ≤ 0 and ε > 0, outputs in poly(size(γ′, ε))
time a bipartite graph G of maximum degree at most ∆ with terminals u, v in the same part
of the vertex partition of G so that G implements γ′ with accuracy ε.

In turn, to prove Lemma 19 it will be simpler to first construct graph gadgets that
implement “vertex” activities.

I Definition 22. Fix a real number γ. Given γ, the graph G = (V,E) is said to implement
the vertex activity λ ∈ R with accuracy ε > 0 if there is vertex u in G such that
1. u has degree one in G,
2. ZG(γ) 6= 0 and

∣∣∣ZG,¬u(γ)
ZG(γ) − λ

∣∣∣ ≤ ε.
We call u the terminal of G. If Item 2 holds with ε = 0, we say that G implements λ
(perfectly).

Our main lemma about implementing vertex activities is as follows.

I Lemma 23. Let ∆ ≥ 3 be an integer and γ < − 1
4(∆−1) be a rational number.

There is an algorithm which, on input a rational number λ and ε > 0, outputs in
poly(size(λ, ε)) time a bipartite graph G of maximum degree at most ∆ that implements the
vertex activity λ with accuracy ε.

In order to obtain the exponential precision of Lemma 23, we will first show how to
implement vertex activities with arbitrarily small constant precision, as formalised in the
following lemma.

I Lemma 24. Let ∆ ≥ 3 be an integer and γ < − 1
4(∆−1) be a real number.

For every λ ∈ R and ε > 0, there is a bipartite graph G of maximum degree at most ∆
that implements the vertex activity λ with accuracy ε.

To prove Lemma 24, we will need to consider two cases for the value of γ. Namely, for an
integer ∆ ≥ 3, the following subset of the negative reals will be relevant:

B∆ =
{
γ ∈ R | γ = − 1

4(∆−1)(cos θ)2 for some θ ∈ (0, π/2) that is a rational multiple of π
}
.

(14)
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If γ /∈ B∆ then we show that we can use (∆− 1)-ary trees of appropriate height to obtain
the constant accuracy of Lemma 24. The situation is more complicated for γ ∈ B∆ since
the (∆− 1)-ary tree is not as effective; neverthless, it can still be used to show that we can
implement perfectly the edge activity γ′ = −1 (though in some cases we have to work a bit
harder, cf. Lemmas 25 and 27 of the full version). To make use of γ′ = −1, we show in
Lemma 26 of the full version that for every rational number λ, there exists a tree of maximum
degree ∆ = 3 that implements the vertex activity λ and this can then be propagated to get
the constant accuracy of Lemma 24 for γ ∈ B∆.

We then bootstrap Lemma 24 to obtain the exponential precision required in Lemma 23,
based on the “contracting maps that cover” technique of [4]. The key is to build a finite
collection of maps Φi : x 7→ 1

1+γ(λi+x) for different values of λi (obtained from Lemma 24)
and to apply these iteratively to amplify precision on an appropriately chosen interval of
the real axis; the details of the construction as well as the choice of the λi’s (see Lemma 30
below) depend heavily on the fact that we are working with the matching polynomial. Using
the maps Φi, Lemma 23 can then be proved using a careful analysis depending on the value
of λ (relative to the interval) and, once this is in place, we have everything we need to prove
Lemma 19, see the full version for details.

The proof of the hardness results for graphs with bounded connective constant (Theorem 4)
can be obtained by adapting our arguments above. Namely, we let S =

⋃
d≥3 Bd. Then, for

γ ∈ S, as we discussed earlier, there exists a tree that implements the edge activity γ′ = −1.
We can then modify the tree so that the terminals of the final tree are at distance `, for
arbitrarily large `. The key now is that we can attach the new tree to the edges of a target
graph to modify the edge activity and at the same time reduce its connective constant (since
there is just one path connecting the terminals of the tree gadget). Since S is dense on
the negative real axis, we therefore obtain Theorem 4 by applying the hardness results of
Theorems 1 and 2.

We conclude by giving the deferred construction of the maps Φi which are used to
obtain the exponential precision of Lemma 23. The proof of the following lemma establishes
important properties of the maps that enable them to bootstrap precision. The lemma also
gives an algorithm that can be used to implement any “target” y with exponential precision.4

I Lemma 30. Let γ < 0 be a rational number. Then, there exist rationals x0 and r, δ > 0
and reals λ∗1, . . . , λ∗t (for some positive integer t) such that the following holds for all rational
λ1, . . . , λt satisfying |λi − λ∗i | ≤ δ for i ∈ [t].

Let I := [x0 − r, x0 + r] and, for i ∈ [t], consider the map Φi : x 7→ 1
1+γ(λi+x) for

x 6= −(1 + γλi)/γ. There is an algorithm which, on input (i) a starting point y0 ∈ I ∩Q, (ii)
a target y ∈ I ∩Q, and (iii) a rational ε > 0, outputs in poly(size(y0, y, ε)) time a number
ŷ ∈ I ∩Q and a sequence i1, i2, . . . , ik ∈ [t] such that

ŷ = Φik(Φik−1(· · ·Φi1(y0) · · · )) and |ŷ − y| ≤ ε.

Proof. Let x1, x2 be rationals such that γx1x2 = −1 and x1 6= ±x2. Let λ be such that
1 + γλ = −γ(x1 + x2). Then, the fixpoints of the map Φ : x 7→ 1

1+γ(λ+x) are x1 and x2, and
at least one of the two points is attracting.5 Denote by x0 the attracting fixpoint of Φ, so

4 The “target” y corresponds to a vertex activity λ – the only difference is that a transformation between
them has been applied for technical reasons, see proof of Lemma 23 in the full version for details.

5 To see this, note that Φ(x) = x is equivalent to x(1 + γλ) + γx2 = 1 and therefore x1 and x2 are
(the only) fixpoints of Φ. Moreover, we have that Φ′(x) = − γ

(1+γ(λ+x))2 and hence Φ′(x1) = −γx2
1,
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that x0 satisfies Φ(x0) = x0 and 0 < |Φ′(x0)| < 1. By Lemma 21 of the full version, we can
compute η > 0 such that for all x ∈ [x0 − η, x0 + η] and all λ′ ∈ [λ− η, λ+ η] it holds that

1 + γ(λ′ + x) 6= 0 and
∣∣∣ γ(

1+γ(λ′+x)
)2 − γ(

1+γ(λ+x0)
)2

∣∣∣ ≤ 1
2 min

{
|Φ′(x0)|, 1−|Φ′(x0)|

}
. (15)

Let r := |Φ′(x0)|
4 η, δ := (r/4) and let λ∗1, . . . , λ∗t form a δ-covering of the interval [λ− η/2, λ+

η/2]. Let λ1, . . . , λt be arbitrary rationals satisfying |λi − λ∗i | ≤ δ. For i ∈ [t] consider the
maps Φi : x 7→ 1

1+γ(λi+x) . Finally, let I be the interval [x0 − r, x0 + r]. We will show
Property 1: The maps {Φi}i∈[t] are contracting on the interval I, and
Property 2: I ⊆ Φ1(I) ∪ · · · ∪ Φt(I).
Once these two properties of the maps {Φi}i∈[t] are proved, the algorithm in the statement
of the lemma and its analysis are almost identical to those in [4, Proof of Lemmas 12 & 26].
The only difference here is that the maps {Φi}i∈[t] have different expressions. The fact that
we need about the expression of the maps is that, for i ∈ [t] and for every rational x, Φ−1

i (x)
can be computed in time poly(size(x, λi, γ)). This is clear since Φ−1

i (x) = 1
γ ( 1

x − 1)− λi.

Proof of Property 1. Fix i ∈ [t]. We will show that Φi is contracting on the interval I.
Observe that r < η/4 since |Φ′(x0)| < 1 and therefore δ < η/4 as well. Then, we have by the
triangle inequality that

|λi − λ| ≤ |λi − λ∗i |+ |λ∗i − λ| ≤ δ + η/2 < η.

Therefore, we can apply (15) to λ′ = λi and x ∈ I. Observe that Φ′(x) = −γ/
(
1+γ(λi+x)

)2
and Φ′(x0) = −γ/

(
1 + γ(λi + x0)

)2 and hence we obtain that for all x ∈ I it holds that

|Φ′i(x)| ≤ 1
2(1 + |Φ′(x0)|) < 1.

It follows that the maps Φi are contracting on the interval I for all i ∈ [t]. J

Proof of Property 2. It suffices to consider an arbitrary y ∈ I and show that there exists
j ∈ [t] such that Φ−1

j (y) ∈ I. To do this, we set J to be the interval [x0 − η/2, x0 + η/2] and
consider the map Φ on the interval J . Then, (15) for λ′ = λ and x ∈ J gives that

0 < 1
2 |Φ

′(x0)| ≤ |Φ′(x)|,

and therefore, by the Mean Value Theorem, for z, w ∈ J we have that
1
2 |Φ

′(x0)| · |z − w| ≤ |Φ(z)− Φ(w)|. (16)

We thus have that

|Φ(x0 + η/2)− x0| = |Φ(x0 + η/2)− Φ(x0)| ≥ η|Φ′(x0)|/4 = r,

|Φ(x0 − η/2)− x0| = |Φ(x0 − η/2)− Φ(x0)| ≥ η|Φ′(x0)|/4 = r.

Since Φ is monotonically increasing and continuous on the interval J , we therefore obtain
that I ⊆ Φ(J). Therefore, for arbitrary y ∈ I it holds that Φ−1(y) ∈ J and hence from (16)
applied to z = Φ−1(y) and w = Φ−1(x0), we obtain that

|Φ−1(y)− x0| = |Φ−1(y)− Φ−1(x0)| ≤ (2/|Φ′(x0)|)(y − x0) ≤ η/2.

Φ′(x2) = −γx2
2. Therefore |Φ′(x1)| 6= |Φ′(x2)| and 1 = |γx1x2| =

√
|Φ′(x1)||Φ′(x2)|. Therefore either

|Φ′(x1)| < 1 or |Φ′(x2)| < 1.
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Since λ∗1, . . . , λ∗t is a δ-covering of the interval [λ− η/2, λ+ η/2], it follows that there exists
j ∈ [t] such that∣∣λ+ Φ−1(y)− x0 − λ∗j

∣∣ ≤ δ = r/4.

Now, observe that Φ−1
j (y) = 1

γ

( 1
y − 1

)
− λj and Φ−1(y) = 1

γ

( 1
y − 1

)
− λ, so we have that∣∣Φ−1

j (y)− x0
∣∣ =

∣∣∣∣ 1γ(1
y
− 1
)
− λj − x0

∣∣∣∣ = |λ+ Φ−1(y)− x0 − λj |

≤ |λ+ Φ−1(y)− x0 − λ∗j |+ |λj − λ∗j | ≤ r/4 + r/4 = r/2.

It follows that y ∈ Φj(I) and therefore, since y was arbitrary, we have that I ⊆ Φ1(I)∪ · · · ∪
Φt(I). J

This completes the proof of Properties 1 and 2, and hence the proof of Lemma 30. J
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