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Abstract. This paper studies a Markov chain for phylogenetic reconstruction which uses a popular tran-
sition between tree topologies known as subtree pruning-and-regrafting (SPR). We analyze the Markov chain
in the simpler setting where the generating tree consists of very short edge lengths, short enough so that each
sample from the generating tree (or character in phylogenetic terminology) is likely to have only one mutation,
and where there are enough samples so that the data looks like the generating distribution. We prove in this
setting that the Markov chain is rapidly mixing, i.e., it quickly converges to its stationary distribution, which is
the posterior distribution over tree topologies. Our proofs use that the leading term of the maximum likelihood
function of a tree T is the maximum parsimony score, which is the size of the minimum cut in T needed to
realize single edge cuts of the generating tree. Our main contribution is a combinatorial proof that, in our
simplified setting, SPRmoves are guaranteed to converge quickly to the maximum parsimony tree. Our results
are in contrast to recent works showing examples with heterogeneous data (namely, the data is generated
from a mixture distribution) where many natural Markov chains are exponentially slow to converge to
the stationary distribution.

1. Introduction. We study Markov chain Monte Carlo (MCMC) methods for
Bayesian inference of phylogeny. We begin by presenting the relevant background
material by defining phylogenetic trees, evolutionary models (in section 1.1), and
the associated MCMCmethods (in section 1.2). We refer the interested reader to Semple
and Steel [15] for a more comprehensive introduction to the mathematics of phylogeny.
Finally, we present our results and discuss related work in section 1.3.

A phylogenetic tree is an unrooted tree T on n leaves (called taxa, corresponding to
n species) where internal vertices have degree three. Let EðTÞ denote the edges of T and
V ðTÞ denote the vertices. In the phylogenetic reconstruction problem, we observe a
collection of labelings of the leaves of T from a set Ω, and our goal is to infer the tree
T from which they were generated. For example, if Ω ¼ fA;C;G;Tg, then we are given
(aligned) DNA sequences for n species, and we are trying to determine the tree describ-
ing the evolutionary history of the present-day species.

1.1. Evolutionary models and maximum likelihood. The labelings on the
leaves of T are the projection of labelings on all vertices of T , and these labelings of
V are generated in the following manner. There is a stochastic process along edges
of T (e.g., modeling the evolutionary process of DNA substitutions) which is defined
by a continuous-time Markov chain. Thus, for each edge e ∈ T there is an jΩj× jΩj
rate matrix Q and a time te > 0, which is called the branch length of e. In this paper,
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as is typical in the phylogenetic setting, we assume there is a single rate matrix Q that is
common to all edges. The rate matrix is assumed to be reversible with respect to some
distribution π on Ω. Hence, fix π as the stationary vector for Q (i.e., πQ ¼ 0). (The
matrix Q is usually scaled so that we expect one “substitution” (i.e., change) per unit
of time.) The rate matrix Q defines a continuous-time Markov chain, and together with
te defines a transition matrix on edge e:

Pe ¼ expðteQÞ ¼ I þ teQ þ t2eQ
2 ∕ 2!þ t3eQ

3 ∕ 3!þ : : : .ð1:1Þ

The matrix Pe is a stochastic matrix of size jΩj× jΩj and thus defines a discrete-time
Markov chain, which is time-reversible with stationary distribution π, i.e., πPe ¼ π,
and πiðPeÞij ¼ πjðPeÞji (for all i, j ∈ Ω).

The simplest four-state (i.e., jΩj ¼ 4) evolutionary model has a single parameter for
the off-diagonal entries of the rate matrix Q; this model is known as the Jukes–Cantor
model. The most general reversible four-state model is the general time-reversible model.
For jΩj ¼ 2 (often studied for mathematical interest), the model is binary and the rate
matrix has a single parameter; this model is known as the Cavender–Farris–Neyman
model. See Felsenstein [6] or Yang [22] for an introduction to these evolutionary models.

Given T , the rate matrix Q, and the branch lengths t ¼ ðteÞe∈EðTÞ, we then define
the following distribution on labelings of the vertices of T . Let Pe ¼ expðteQÞ for
e ∈ EðTÞ. We first orient the edges of T away from an arbitrarily chosen root r of
the tree. (We can choose the root arbitrarily since each Pe is reversible with respect
to π.) Then the probability of a labeling l∶V ðTÞ → Ω is

μ 0
T;Q;tðlÞ ≔ πðlðrÞÞ

Y
uv�!∈EðTÞ

PuvðlðuÞ;lðvÞÞ:ð1:2Þ

The distribution μ 0
T;Q;t can be generated in an equivalent algorithmic manner. Choose

lðrÞ from π. Then for each edge e ¼ ðu; vÞ ∈ EðTÞ, given an assignment for exactly one
of the endpoints, say, lðuÞ, choose lðvÞ from the distribution defined by the row of Pe

corresponding to the label lðuÞ.
Let μT;Q;t be the marginal distribution of μ  0

T;Q;t on the labelings of the leaves of T
(thus μT;Q;t is a distribution on Ωn, where n is the number of leaves of T). Fix T � with
parameters Q� and t� as the generating tree. The goal of phylogeny reconstruction is to
reconstruct T� (and possibly Q� and t�) from μT�;Q�;t� (more precisely, from indepen-
dent samples from μT�;Q�;t�).

LetQ denote a set of rate matrices with nonzero entries where Q� ∈ Q. The setQ is
the set of possible rate matrices. The set can be arbitrary; usually it is determined by the
model considered (e.g., for the Jukes–Cantor model Q would contain rate matrices
whose off-diagonal entries are the same). One often assumes that the rate matrix Q�

is known. In this case we would set Q ¼ fQ�g. On the other hand, our results also apply
if one sets Q to be the set of all rate matrices with nonzero entries.

We consider the likelihood of a tree T as the maximum over rate matrices Q ∈ Q
and over assignments of nonzero branch lengths t to the edges of T of the probability
that the tree ðT;Q; tÞ generated μ. More formally, the maximum expected log-
likelihood of tree T for distribution μ� is defined by

LT ðμ�Þ ¼ sup
Q∈Q

sup
t

LT;Q;tðμ�Þ;ð1:3Þ
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where

LT;Q;tðμ�Þ ¼
X
y∈Ωn

μ�ðyÞ lnðμT;Q;tðyÞÞ:ð1:4Þ

For a set of charactersD ¼ ðD1; : : : ; DN ÞwhereDi ∈ Ωn, define the log-likelihood of
a tree T as

LT ðDÞ ¼ sup
Q∈Q

sup
t

ln ðμT;Q;tðDÞÞ ¼ sup
Q∈Q

sup
t

XN
i¼1

ln ðμT;Q;tðDiÞÞ:

Our goal is to sample from the distribution on the set of phylogenetic trees with n
leaves where the weight of a tree is LT ðDÞ. In section 3 we will look at the straightfor-
ward extension to the setting where we are given a prior on trees and parameters Q, t,
and our goal is to sample from the posterior distribution.

1.2. Subtree pruning-and-regrafting Markov chain. We analyze a Markov
chain using transitions made by subtree pruning-and-regrafting (SPR). SPR transitions
are a natural combinatorial transition, which is also popular in practice. In section 4 we
discuss several other well-studied choices for the transitions. Here we consider trees
weighted by their maximum likelihood. In section 3 we discuss how the Markov chain
definition and our main result extends to sampling the posterior distribution.

An SPR transition from a tree T works by choosing an (internal or terminal) edge
e ¼ ðu; vÞ. If e is an internal edge, we consider one of the two subtrees in T \ e: either the
subtree Su containing u or the subtree Sv containing v. Let Su denote the selected sub-
tree. If e is a terminal edge, let Su be the endpoint of e that is a leaf. Let T  0 denote the
tree formed by removing Su from T ; in particular, we remove Su and edge e from T and
“smooth away” the vertex v (that is, contract one of the two adjacent edges). We then
choose an edge e� in T  0, and we attach S onto e� by adding a new intermediate vertex
along e�. See Figure 1.1 for an illustration. Let SPRðT; Su; e

�Þ denote the tree resulting
from the above transition.

We analyze the following Markov chain, which chooses a random subtree S to prune
and then chooses an edge to regraft S along, based on the maximum likelihood of the
resulting tree. This Markov chain is analogous to heat bath chains studied in statistical
physics (as opposed to Metropolis chains) (e.g., see [4]); thus we refer to the below chain

FIG. 1.1. Illustration of an SPR transition. The randomly chosen edge e is marked by an arrow. The
subtree containingB andC is pruned and then regrafted at the edge e� marked by a starred arrow. The resulting
tree is illustrated.

1196



as the heat bath SPR Markov chain. Here is the formal definition of the transitions
Tt → Ttþ1 of the heat bath SPR Markov chain.

From a tree Tt at time t we proceed as follows:
1. Choose a random subtree S of Tt by choosing a random edge e and then choos-

ing one of the two subtrees hanging off of e. Let T  0 denote the tree formed by
deleting S and e from T .

2. For each edge e� of tree T  0, let wðe�Þ ¼ LT̂ ðDÞ, where T̂ ¼ SPRðT; S; e�Þ is the
tree formed by pruning S from T and regrafting S onto edge e�. Let ω be the
distribution on edges of T  0, where ωðe�Þ ¼ wðe�Þ∕ Z and Z ¼ P

e 0∈EðT  0Þwðe 0Þ.
3. Sample an edge e� from the distribution ω on edges of T  0.
4. Graft S onto edge e� and move to this new tree, i.e., set Ttþ1 ¼ SPRðT; S; e�Þ.
We now verify that the above Markov chain is ergodic and reversible with respect to

the distribution π on trees where πðTÞ ∝ LT ðDÞ, and thus π is also the unique station-
ary distribution. Let T 1 and T 2 be neighboring states of the Markov chain. Let S be the
tree that is pruned and regrafted to obtain T 2 from T 1. Note that the same tree S can be
pruned and regrafted to obtain T 1 from T 2. The transition probability from T 1 to T2 is
the probability of choosing S in step 1 times LT2

ðDÞ ∕ Z . Similarly the transition prob-
ability from T 2 to T 1 is the probability of choosing S in step 1 times LT1

ðDÞ ∕ Z (note
that Z is the same in both cases since pruning S results in the same treeT  0). The detailed
balance condition is satisfied for πðTÞ ∝ LT ðDÞ, and hence it is the unique stationary
distribution.

Let dTV ðμ; νÞ denote the (total) variation distance between a pair of probability
distributions μ and ν defined on the same finite, discrete space, and let PtðT0; ·Þ denote
the tstep distribution of the Markov chain from initial state T 0. The mixing time τmix is
defined as

τmix ¼ max
T0

minft∶dTV ðPtðT 0; ·Þ;πÞ ≤ 1 ∕ 2eg;

which is the time to reach variation distance ≤1 ∕ 2e of the stationary distribution from
the worst initial state. Note it is straightforward to then “boost” so that for any δ > 0,
after τmix lnð1 ∕ δÞ steps we are within variation distance ≤δ of π from the worst initial
state (see Aldous [1]).

1.3. Results on MCMC for phylogenetic reconstruction. MCMC algo-
rithms are an important tool for phylogenetic reconstruction. MrBayes [10] is a popular
program that relies on MCMC methods for Bayesian inference of phylogeny. MrBayes
uses a sophisticated variant of MCMC known as Metropolis-coupled MCMC [8].

For statistical inference problems, such as phylogenetic reconstruction, it is often
easy to design appropriate MCMC algorithms, such as the above Markov chain we de-
fined using SPR transitions, which converge in the limit over time to the desired poster-
ior distribution. However, the computational efficiency of these methods relies on their
fast convergence to the posterior distribution. Since theoretical results are typically lack-
ing, heuristic methods are used to measure convergence to the desired distribution.
Hence, there are often no rigorous guarantees on the scientific computations which rely
on the random samples produced by the MCMC methods. Our goal is to provide some
theoretical understanding of settings where MCMC methods for phylogenetic recon-
struction are provably fast and hence yield accurate results and settings where the
MCMC methods are slow, and consequently the samples may be misleading.

There are several works with computational experiments on the convergence rates
of MCMC algorithms for phylogenetic reconstruction; e.g., see the recent works [3], [11].
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There is relatively little theoretical work. Diaconis and Holmes [5] proved fast conver-
gence of a Markov chain to the uniform distribution over phylogenetic trees. Recently,
several works have shown examples of heterogeneous data where MCMC algorithms are
provably slow to converge. Mossel and Vigoda [13], [14] proved slow convergence for a
class of examples with data arising from a uniform mixture of a pair of 5-taxa trees (with
different topologies). Štefankovič and Vigoda [19], [20] proved slow convergence for a
class of mixture examples from a pair of 5-taxa trees that share the same topology but
differ in their branch lengths. In these slow mixing results, the convergence time is ex-
ponential in the number of characters (i.e., sequence length).

In this paper we show fast convergence for data from a homogenous source of closely
related species. In particular, for data generated from a single tree (of any size) when all
the branch lengths are sufficiently short, we prove fast convergence. The requirement of
sufficiently short branches is for our proof technique, but it is important to note that the
slow mixing results mentioned earlier [13], [14], [19], [20] require, in an analogous man-
ner, sufficiently short branches. If one searches for the tree with the maximum likelihood
(or maximum a posteriori probability), our methods show that in our setting of very
short branch lengths, the space of trees (connected by the SPR moves) has no local
maxima, and hence one can find the optimal tree using hill climbing.

For simplicity, we present our results here for the case where the weight of a tree is
the maximum likelihood of generating the given data D where the maximum is over a
rate matrix Q (common to all edges) and a set of branch lengths t. This is closely related
to the posterior distribution when the priors are uniformly distributed. Our results ex-
tend to δ-regular priors, which are priors that are lower bounded by some δ > 0; see
section 3 for a discussion on the extension of our results to sampling the posterior dis-
tribution. We are interested in the mixing time τmix, defined as the number of steps until
the chain is within variation distance ≤1 ∕ 2e of the stationary distribution.

We prove that the heat bath SPR Markov chain converges quickly to its stationary
distribution when the data is generated from a tree T � where all of the branch lengths
are sufficiently small, and there are sufficiently many samples generated fromT �. Here is
the formal statement of our main result.

THEOREM 1.1. Consider any reversible 4-state model, any phylogenetic tree T � on n

taxa, and any rate matrix Q� with no zero entries. For all αmin > 0, there exists ϵ0 > 0

such that for all 0 < ε < ε0 and any choice of branch lengths t�e ∈ ðαminϵ; ϵÞ for
e ∈ EðT�Þ, there exists N 0 > 0 where the following holds.

For a data set with N > N 0 characters, each chosen independently from the distri-
bution μT�;Q�;t� , then, with probability >1− expð− ffiffiffiffiffi

N
p Þ over the data generated, the heat

bath SPR Markov chain has mixing time ≤50n.
Since there is considerable quantification in Theorem 1.1,we will take a moment to

dissect it at a high level. First, the requirement that N > N 0 comes from needing the
data to look very much like the generating distribution μ� ¼ μT�;Q�;t� . Therefore, how
much data we need depends on several quantities, such as the minimum probability of a
configuration arising in μ�, which depends on the minimum branch length and the mini-
mum rate inQ�. Hence,N 0 depends on αmin andQ� and is exponential in n. A somewhat
related question has been studied by Steel and Székely [16], [17], [18] on how large N
needs to be so that the maximum likelihood tree is the generating treeT �. In their results
one also needs N to be exponential in n.

Our proof uses the fact that in the setting of Theorem 1.1, where the branch lengths
are sufficiently short, the leading term of the maximum likelihood function is actually
maximum parsimony. Such a result is well known in the mathematical phylogeny
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community and was first observed by Felsenstein [7]. We require a more detailed state-
ment of such a result, which we present in Lemma 2.1 in section 2.2. Our main technical
contribution is a combinatorial proof that, in the setting of Theorem 1.1, SPRmoves can
be used in a greedy manner to quickly find the maximum parsimony tree. This result is
presented in section 2.3. Finally, in section 2.4 we show how Theorem 1.1 follows in a
straightforward manner from these combinatorial results. In section 3 we discuss how
Theorem 1.1 extends to Bayesian inference. We make some concluding remarks in
section 4.

2. Proof of rapid mixing.

2.1. Overview. To prove Theorem 1.1 we will analyze, for every tree T , the max-
imum expected log-likelihood LT ðμ�Þ, where μ� ¼ μT�;Q�;t� (recall that LT ðμ�Þ is the
maximum expected log-likelihood of T maximized over all rate matrices Q and all edge
lengths t; see (1.3)). To analyze LT ðμ�Þ we will consider the dominant terms of the
likelihood function. We will show that

LT ðμ�Þ ¼ Eðπ�Þ þAðTÞε ln εþ oðε ln εÞ;
where Eðπ�Þ is the entropy of the stationary distribution of Q� and thus is the same for
every T . By taking ε sufficiently small, the last term oðε ln εÞ can be ignored. Therefore,
the dominant term is AðTÞε ln ε. We will prove that the function AðTÞ decreases with
each optimal SPR move. Hence, since ln ε is negative, we then have that T� has the
highest maximum expected log-likelihood, and as the Markov chain gets closer to T �

the maximum expected log-likelihood will increase. Theorem 1.1 will then follow in a
straightforward manner.

2.2. Analyzing likelihood. Let T be a tree with leaves f1; : : : ; ng. Let R be a
partition of the leaves into two parts ðR1; R2Þ. Note that we consider only the partition
of the leaves without any regard for the internal vertices. Let cutRðTÞ denote the size of
the cut (i.e., a subset of edges) of minimum size that disconnectsR1 fromR2. Tuffley and
Steel [21] showed that the quantity cutRðTÞ is the parsimony score of the character
corresponding to R (see also Semple and Steel [15, Proposition 5.1.6]), where the char-
acter corresponding to R ¼ ðR1; R2Þ assigns all leaves in R1 some α ∈ Ω and assigns all
leaves in R2 some β ∈ Ω, β ≠ α.

For an edge e ∈ T , the removal of e splits T into two components. This induces a
partition of the leaves of T into two parts. We will call this partition RðT; eÞ.

The following is the main technical tool for our results. The lemma describes the
high-order terms of the likelihood function as ε → 0. Throughout this paper, the asymp-
totic notations oðÞ and OðÞ are parameterized by ε → 0.

Roughly speaking, the lemma shows there is a function AðTÞ which plays a leading
role in the maximum likelihood. In words,AðTÞ looks at each partition R of leaves in the
generating tree T � realized by cutting a single edge e�. It then considers the minimum
number of edges in T to realize this partition R times the branch length of e� in the
generating tree. As mentioned in the introduction, there are earlier results which show
that the leading term of the likelihood function is the parsimony score, e.g., Felsenstein
[7], and in Lemma 2.1, the function A is the leading term of the expected parsimony
score. We require a more detailed statement than we found in the literature.

LEMMA 2.1. Let T �, T be trees with leaves f1; : : : ; ng and Q� be a rate matrix re-
versible with respect to π�. Assume that the matrix Q� is normalized (that is,P

i≠jπ
�
i Q

�
ij ¼ 1) and that Q� has no zero entries. Let T� have branch lengths

t�e ¼ α�
eε, where α�

e ∈ ½α�
min;α

�
max�, for all e ∈ EðT �Þ, where αmin > 0. Let
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A ¼ AT�;α� ðTÞ ¼
X

e∈EðT�Þ
α�
ecutRðT�;eÞðTÞ:ð2:1Þ

For μ� ¼ μT�;Q�;t� the following holds:

LT ðμ�Þ ¼ Eðπ�Þ þAε ln εþOðε ln lnð1 ∕ εÞÞ;ð2:2Þ

where Eðπ�Þ ¼ P
i∈Ωπ

�
i ln π�

i is the entropy of π� and the constant in the Oð·Þ is inde-
pendent of the choice of the α�

e (but does depend on α�
min and α�

max).
As a consequence of Lemma 2.1, to analyze the expected log-likelihood on the tree

space, when ε is sufficiently small, we simply have to consider the function A ¼ AðTÞ. In
the next subsection we will investigate the combinatorial properties of A.

Before presenting the proof of Lemma 2.1 we give a brief outline of its proof.
Let μ� denote the probability distribution defined by Q� and T � on assignments of

labels from Ω to the leaves. In this generating distribution μ�, to prove (2.2) we need
only to consider two types of assignments. The first type is constant assignments where
no substitutions occur, and thus all leaves receive the same label i ∈ Ω; these are denoted
as σi. The second type is assignments obtained by a substitution along just one edge e�.
In this case, the cut obtained by deleting edge e� plays an important role. By deleting e�

from T �, the leaves are partitioned into two sets R1 and R2, denoted as RðT�; e�Þ. If a
substitution occurs only along edge e�, then the leaves in R1 will receive the same label
i ∈ Ω, and the leaves in R2 will receive another label j ∈ Ω, j ≠ i. We denote such an
assignment by σe�

ij . Any other type of assignment requires at least two substitutions and
hence has probability at most Oðε2Þ, which is dominated by the Oðε ln lnð1 ∕ εÞÞ term
of (2.2).

For any tree T , to prove that LT ðμ�Þ is lower bounded by the right-hand side of
(2.2), we compute the expected log-likelihood of μ� for the rate matrix Q ¼ Q� and the
set of branch lengths t, where te ¼ ε for every edge e. For each edge e� and its corre-
sponding assignment σe�

ij , the quantity cutRðT�;eÞðTÞ is the minimum number of edges
which require a substitution to obtain the assignment σe�

ij on T . Hence, the quantity
A ¼ AðTÞ plays an important role when we sum over all edges e� of T �. In particular,
by a calculation (as detailed in (2.9) below), the expected log-likelihood LT;Q;tðμ�Þ
for this set of branch lengths t is

P
i∈Ωπ

�
i ln π�

i þAε ln εþOðεÞ. Since OðεÞ ¼
Oðε ln lnð1 ∕ εÞÞ, this implies the lower bound of (2.2).

To obtain the upper bound of (2.2) we consider three cases: when the rate matrix Q
has a stationary distribution different from Q�, when there is an edge e, where te is long
(namely, ≥εðlnð1 ∕ εÞÞ2), and when all edges are short. In the first case of different sta-
tionary distributions, by considering the constant assignments, it will be easy to estab-
lish that there is a difference in the first term of the right-hand side of (2.2). When there
is a long edge, the constant assignments are too unlikely to occur. Finally, if all edges are
shorter than εðlnð1 ∕ εÞÞ2, then, by calculation, we show that the expected log-likelihood
is at most the right-hand side of (2.2).

We now present the formal proof of Lemma 2.1.
Proof of Lemma 2.1. We first make some observations about the distribution μ�.

Let P� denote the transition matrix for Q�, as defined in (1.1).
Note, for any e, any i, j ∈ Ω, where i ≠ j, we have

ðP�
eÞij ¼ Q�

ijα
�
eεþOðε2Þ:ð2:3Þ
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For any i ∈ Ω we have

ðP�
eÞii ¼ 1−

X
j≠i

ðP�
eÞij ¼ 1þOðεÞ:

For i ∈ Ω, let σi ∈ Ωn denote the constant assignment σiðvÞ ¼ i for all leaves v.
Note to achieve σi in μ� we assign label i to the root and then we have no substitutions,
or we have at least two edges with substitutions. Thus,

μ�ðσiÞ ¼ π�
i

Y
e∈EðT�Þ

ðP�
eÞii þOðε2Þ ¼ π�

i þOðεÞ:ð2:4Þ

For an edge e ∈ EðT �Þ and i, j ∈ Ω, where i ≠ j, let σe
ij ∈ Ωn denote the assignment of

label i to all leaves in one of the partitions ofRðT �; eÞ and label j to all leaves in the other
partition of RðT �; eÞ. In this case we have

μ�ðσe
ijÞ ¼ π�

iQ
�
ijα

�
eεþOðε2Þ:ð2:5Þ

(To see why (2.5) is correct, w.l.o.g., assume that the root is a leaf in the first partition of
RðT �; eÞ, and hence to achieve σij we need to label the root by i and have a substitution
on e or at least two edges with substitutions.)

Now we compute LT;Q;tðμ�Þ, where te ¼ ε for each edge e of T and Q ¼ Q�. Again
we will make some observations about μ ¼ μT;Q;t. By the same reasoning as we used for
(2.4), we obtain

μðσiÞ ¼ π�
i þOðεÞ:ð2:6Þ

We can obtain assignment σe
ij on T using a substitution on cutRðT�;eÞðTÞ edges, and we

cannot obtain this assignment with fewer substitutions. Hence,

μðσe
ijÞ ¼ ΘðεcutRðT� ;eÞðTÞÞ:ð2:7Þ

Therefore,

ln μðσe
ijÞ ¼ Θð1Þ þ cutRðT�;eÞðTÞ ln ε:ð2:8Þ

In order to compute the high-order terms of LT;Q;tðμ�Þ, we do not need to consider la-
belings other than σi and σe

ij (the other labelings have probability Oðε2Þ in μ�).
Combining (2.5), (2.4), (2.6), and (2.8) we obtain

LT;Q;tðμ�Þ ¼ Oðε2 ln εÞ þ
X
i∈Ω

ðπ�
i þOðεÞÞ lnðπ�

i þOðεÞÞ

þ
X

e∈EðT�Þ

X
i≠j

ðπ�
iQ

�
ijα

�
eεþOðε2ÞÞðΘð1Þ þ cutRðT�;eÞðTÞ ln εÞ

¼ OðεÞ þ
X
i∈Ω

π�
i ln π�

i þ Aε ln ε;ð2:9Þ

where in the last inequality we used the fact thatQ� is normalized. This proves the lower
bound in (2.2).

It remains to prove the upper bound in (2.2). We will show that no rate matrix and
no assignment of branch lengths can do better than the bound established in (2.9). LetQ
be a rate matrix with stationary distribution π. If π ≠ π�, then we bound LT;Q;tðμ�Þ
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as follows. First, note that the terms in the sum (1.4) are negative, and hence to obtain
an upper bound we will consider only the constant assignments. Second, the probability
of constant assignment σi in μ� is μ�ðσiÞ ≤ π�

i and similarly μðσiÞ ≤ π. Thus

LT;Q;tðμ�Þ ≤
X
i∈Ω

π�
i ln πi ¼

X
i∈Ω

π�
i ln π�

i − DKLðπ�kπÞ;

where DKLðπ�jjπÞ ≔ P
i∈Ωπ

�
i ðlnðπ�

i ∕ πiÞÞ is the KL-divergence of π from π�. Since, by
the Gibbs’ inequality, the KL-divergence is positive when π ≠ π�, we have established
the upper bound in (2.2) for the case π ≠ π�.

Now we assume π ¼ π�. Let t be an assignment of branch lengths to T . Let
μ ¼ μT;Q;t. Suppose that there exists an edge f ∈ EðTÞ with branch length
tf > εðlnð1 ∕ εÞÞ2. We are going to show that such a t has a tiny log-likelihood because
of the constant leaf labelings (i.e., σi, i ∈ Ω). By (1.1), we have ðPf Þii ≤
1− qminεðlnð1 ∕ εÞÞ2 þOðε2ðlnð1 ∕ εÞÞ4Þ, where qmin ¼ mini;j∈ΩjQði; jÞj. Hence,

μðσiÞ ≤ πið1− qminεðlnð1 ∕ εÞÞ2 þOðε2ðlnð1 ∕ εÞÞ4ÞÞ:
Thus

LT;Q;tðμ�Þ ≤ OðεÞ þ
X
i∈Ω

π�
i ðlnðπiÞ− qminεðlnð1 ∕ εÞÞ2 þOðε2ðlnð1 ∕ εÞÞ4ÞÞ

≤ Eðπ�Þ− qminεðlnð1 ∕ εÞÞ2 þOðεÞ:ð2:10Þ
As ε → 0, (2.10) is smaller than the right-hand side of (2.2), and we are done.

We are now left with the case in which all edges f ∈ EðTÞ have branch lengths
tf ≤ εðlnð1 ∕ εÞÞ2. Since we can generate the leaf labelings starting from any vertex, then
by starting at a leaf, we see that

ln μðσiÞ ≤ ln πi:ð2:11Þ
Moreover, for e ∈ EðT �Þ, to generate σe

ij, we need to have substitutions across all edges
in a cut that realizes RðT �; eÞ. Since the edges are short, this happens with probability
≤ðεðlnð1 ∕ εÞÞ2Þk, where k is the size of the cut. Since there are at most 2n such cuts and
each has size at least cutRðT�;eÞðTÞ, we have that

ln μðσe
ijÞ ¼ cutRðT�;eÞðTÞðOðln lnð1 ∕ εÞÞ þ ln εÞ:ð2:12Þ

Hence,

LT;Q;tðμ�Þ ≤ Oðε2 ln εÞ þ EðπÞ
þ

X
e∈EðT�Þ

X
i≠j

ðπ�
iQ

�
ijα

�
eεþOðε2ÞÞcutRðT�;eÞðTÞðOðln lnð1 ∕ εÞÞ þ ln εÞ

¼ Oðε ln lnð1 ∕ εÞÞ þ EðπÞ þ Aε ln ε. ▯

2.3. Analyzing the cut distanceA�T�. In light of Lemma 2.1, we need to analyze
how AðTÞ changes with SPR moves. By taking N sufficiently large, for each subtree S,
we will only need to analyze the effect of the optimal SPR move for S (optimal in terms
of minimizing AðT  0Þ).

The quantity AðTÞ looks at cuts obtained by single edges of T �. For a tree T , we
classify the edges of T� as good or bad if their corresponding cut in T � is realizable in T
by cutting a single edge. More precisely, let

1202



GOODT� ðTÞ ¼ fe� ∈ EðT �Þ∶there exists e ∈ EðTÞwhereRðT; eÞ ¼ RðT �; e�Þg
be the set of good edges for T . Let BADT� ðTÞ ¼ EðT �Þ \ GOODT� ðTÞ.

Lemma 2.2 says that for every tree ~T obtained fromT by an SPRmove using S , if ~T
has more bad edges than T , then this was not the optimal SPR move using S . Namely,
there is a tree T  0 which is also obtained from T by an SPR move using S , and T  0 is such
that AðT  0Þ < Að ~TÞ. (More precisely, each term in AðT  0Þ is less than or equal to the
corresponding term in Að ~TÞ, and there is a term in AðT  0Þ which is strictly smaller than
the corresponding term in Að ~TÞ). Our proof has some similarity to those of Bruen and
Bryant [2] which connect the parsimony score of a character to the minimum number of
SPR transitions needed to obtain the character.

LEMMA 2.2. For every generating treeT � and all trees T , ~T , whereT and ~T differ by
a prune-and-regraft of a subtree S and such that there exists f � ∈ BADT� ð ~TÞ \
BADT� ðTÞ, the following holds. There exists a tree T  0 which differs from T by a
prune-and-regraft of S and such that cutRðT  0Þ ≤ cutRð ~TÞ for every partition R realized
by single edges in T � and cutRðT  0Þ < cutRð ~TÞ for partition R realized by f � in T�.

Proof. Suppose an edge f � ∈ EðT �Þ is good for T and is bad for ~T . Let L1, L2 be the
partition of the leaves induced by f � in T �. Thus, in T , there is an edge f ¼ ðv1; v2Þ
which partitions the leaves into L1 and L2. See Figure 2.1 for an illustration of the setup.

Let S1 denote the subtree “hanging off’’ of v1 in T . More precisely, after deleting f
from T , let S1 be the subtree containing v1. Let L1 denote the leaves in S1. Similarly, let
L2 denote the leaves and S2 denote the subtree hanging off of v2. Let v denote the root of
the subtree S .

First we claim that f ∈= S. Suppose f ∈ S and w.l.o.g. suppose S1 ⊂ S. See Figure 2.2
for an illustration of this case. Thus we must be grafting S into an edge of S2 \ S .

FIG. 2.1. Edge f � is good for T .

FIG. 2.2. Case when f ∈ S; this scenario cannot occur.
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After such a move, the edge f still separates L1 and L2, and thus f � is still good.
Therefore, f ∈= S.

From now on, we assume, w.l.o.g., that S ⊂ S1, where S ≠ S1; see Figure 2.3. We
construct the tree T  0 by taking T , pruning S, and then regrafting S along edge f ; see
Figure 2.4.

Note that ~T is obtained from T by regrafting S onto an edge in S2 (otherwise f �

would be good for ~T); see Figure 2.5.
The following claim says that the tree T  0 satisfies the conclusion of the lemma.
Claim 2.3. For every partition R ¼ ðR1; R2Þ of leaves realized by edges of T �, it

holds that

cutRð ~TÞ ≥ cutRðT  0Þ.

FIG. 2.3. Case when f ∈= S; this must be the scenario.

FIG. 2.4. Construction of the tree T  0.

FIG. 2.5. In tree ~T , S is regrafted into S2.
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Moreover, for the partition R� ¼ ðL1; L2Þ (corresponding to f �), we have that

cutR� ð ~TÞ > cutR� ðT  0Þ:

The proof of the claim proceeds by constructing a cut in T  0 realizing ðR1; R2Þ by a
small modification of a cut in ~T realizing ðR1; R2Þ. Assuming the claim, the proof of the
lemma is now complete. ▯

We now prove Claim 2.3.
Proof of Claim 2.3. We continue using the setup and notation from the proof of

Lemma 2.2 in section 2.3.
Recall that the claim says that for every partition R ¼ ðR1; R2Þ of leaves

realized by edges of T � that cutRð ~TÞ ≥ cutRðT  0Þ and for the partition R� ¼ ðL1; L2Þ,
cutR� ð ~TÞ > cutR� ðT  0Þ.

First we argue that cutR� ð ~TÞ > cutR� ðT  0Þ. Note that cutR� ð ~TÞ ≥ 2 since f � is bad
for ~T . On the other hand, cutR� ðT  0Þ ¼ 1 since cutting f  0 0 separates L1 and L2. Now we
just need to argue that cutRð ~TÞ ≥ cutRðT  0Þ.

Let g� ∈ EðT �Þ be an edge in T �. Let R ¼ ðR1; R2Þ be the corresponding partition in
T �. Note that if g� is in the subtree with leaves L1, then

R1 ⊆ L1 and R2 ⊇ L2:ð2:13Þ
On the other hand, if g� is in the subtree with leaves L2, then

R2 ⊆ L2 and R1 ⊇ L1:ð2:14Þ
Consider a minimum cut C ⊂ Eð ~TÞ that realizes ðR1; R2Þ in ~T and among these

minimum cuts is the one with the fewest number of edges in subtrees S1 \ S and S .
We claim that v1 is reachable from a leaf of S1 \ S in ~T \ C and that v is reachable

from a leaf of S in ~T \ C . Suppose that v1 is not reachable from a leaf of S1 \ S . Let e 0 be
the edge in C ∩ ðS1 \ SÞ closest to v1. We claim that C  0 ¼ ðC \ fe 0gÞ ∪ ffg realizes
ðR1; R2Þ. If there were a pair of leaves in S1 \ S each in different Ri that are connected
in ~T \ C  0, then by the choice of e 0 one of those leaves would be connected to v1 in ~T \ C , a
contradiction with the assumption that v1 is not reachable from a leaf of S1 \ S in ~T \ C .
Thus R1 andR2 are still separated in S1 \ S in ~T \ C  0;R1 andR2 are still separated by C  0

in S2 ∪ S since C ¼ C  0 in this subtree; and f ∈ C  0 ensures that pairs across f are se-
parated. Note that jC  0j ≤ jC j and C  0 has fewer edges in S1 \ S and S , a contradiction
with the choice of C . Thus v1 is reachable from some leaf of S1 \ S in ~T \ C . The argu-
ment for S and v is the same.

Since a leaf of S is reachable from v in ~T \ C , then in other words a (nonempty)
subset of R1 and/or R2 is reachable from v. Moreover, since C realizes the partition
ðR1; R2Þ, then a subset of only one of the Ri is reachable from v in ~T \ C ; we will
say v is of type Ri to signify the Ri reachable from v. Analogously, we say vi is of type
Ri for the set reachable from v1.

If v and v1 are of the same type Ri, let

C  0 ¼
�
C if f ∈= C;
ðC \ ffgÞ ∪ ff  0g if f ∈ C .

We claim C  0 realizes ðR1; R2Þ in T  0. To see this, note that if a path (between a pair of
leaves) exists in T  0 and does not exist in ~T , then it must include w, which is the new
vertex in T  0 where S is regrafted; see Figure 2.4 for an illustration. Now we argue that
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such a path cannot connect a leaf in R1 with a leaf in R2 in T  0 \ C  0. Note that only a
subset of Ri is reachable from w in T  0 \ C  0, since w can reach the same set of vertices
(outside of S) in T  0 \ C  0 as v1 does in ~T \ C , and only a subset of Ri is reachable from v in
S \ C . Finally, since jC  0j ¼ jC j, we have that cutRðT  0Þ ≤ cutRð ~TÞ, which completes the
proof in this case.

Now suppose v1 is of type R1 and v is of type R2. This means a leaf of S is in R2, and
since S ⊂ S1, it is also in L1, and we are in case (2.13); thus R2 ⊇ L2. Note C has to
separate v1 from L2 by some set of edges Q ⊆ C . Let C  0 ¼ ðC \ QÞ ∪ ffg. The new pairs
of leaves that are connected in T  0 \ C  0 (but not in ~T \ C) either are both from L2 and
hence R2 or are connected by a path that exists in T  0 and does not exist in ~T . As in the
previous case, if a path (between a pair of leaves) exists in T  0 and does not exist in ~T ,
then it must include w, which is the new vertex in T  0 where S is regrafted. Note thatw is
disconnected from S1 \ S in T  0 \ C  0 (since f ∈ C  0). The leaves of S2 are from R2, and the
leaves of S reachable from v in S \ C are also from R2. Therefore the new paths do not
connect leaves of R1 and R2. This completes this case since jC  0j ≤ jC j.

Finally, suppose v1 is of type R2 and v is of type R1. In this case a leaf of S1 \ S is in
R2 and is also in L1, and therefore we are again in case (2.13); thus R2 ⊇ L2. Note C has
to separate v from L2 by some set of edges Q ⊆ C . Let C  0 ¼ ðC \ QÞ ∪ fw; vg. Once
again, the new pairs of leaves that are connected in T  0 \ C  0 (but not in ~T \ C) either
are both from L2 and hence R2 or are connected by a path that exists in T  0 and does
not exist in ~T . Note that w is disconnected from the leaves of S in T  0 \ C  0. The leaves of
S2 are from R2, and the leaves of S1 \ S reachable from v1 are also from R2. Therefore the
new paths in T  0 \ C  0 do not connect leaves of R1 and R2. This completes this case
since jC  0j ≤ jC j.

This completes the proof of the claim. ▯
Using Lemma 2.2, we will prove that for every subtree S the optimal SPR move

using S does not increase the number of bad edges, and there is a subtree S where
the optimal SPR move using S decreases the number of bad edges. It will then be
straightforward to prove rapid mixing by analyzing the time until the number of
bad edges is zero, and hence we have reached T �.

LEMMA 2.4. For all trees T �, every choice of parameters α∶EðT �Þ → Rþ, and for all
trees T ≠ T � the following holds, where A ¼ AT�;α is defined in (2.1).:

1. For any subtree S of T the following holds. Let Tmin be any tree which minimizes
AðTminÞ among the SPR neighbors ofT which differ by a prune-and-regraft of S.
Then

BADT� ðTminÞ ⊆ BADT� ðTÞ:ð2:15Þ

2. There exists a subtree S of T where the following holds. Let Tmin be any tree
which minimizes AðTminÞ among the SPR neighbors of T which differ by a
prune-and-regraft of S. Then

BADT� ðTminÞ ⊈ BADT� ðTÞ:ð2:16Þ

Part 1 of Lemma 2.4 follows immediately from Lemma 2.2. To prove part 2 we
choose a particular “minimal” subtree S . Roughly speaking, we consider the bad edge
f � that is closest to the leaves in T � and take the subtree S hanging off of f �.

Proof of Lemma 2.4. If (2.15) is violated, then there exists f � ∈ BADT� ðTminÞ \
BADT� ðTÞ, and hence by Lemma 2.2, there exists T  0 (which differs from T and
Tmin by a prune-and-regraft of S) such that no cuts increased in size and the cut
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corresponding to f � is smaller. Therefore, AðT  0Þ < AðTminÞ, contradicting the choice of
Tmin. Therefore, part 1 holds.

We now prove part 2. We first claim that there is an SPR move that decreases the
number of bad edges.

Claim 2.5. For every tree T , there is an SPR move resulting in a tree T  0, where

BADT� ðT  0Þ ⊈ BADT� ðTÞ:ð2:17Þ
Now we argue that part 2 of Lemma 2.4 follows from Claim 2.5 and part 1. We then

go back to prove the claim.
Consider a subtree S of T . Let NSðTÞ denote those trees obtainable from T by a

prune-and-regraft of S. Note that for any T  0 ∈ NSðTÞ, we have that NSðT  0Þ ¼ NSðTÞ,
since when we prune S from T and T  0, we have the same subtree remaining.

Let T  0 denote the neighboring tree from Claim 2.5 with fewer bad edges, and let S
denote the subtree where T  0 ∈ NSðTÞ. Let Tmin denote the tree in NSðTÞ which mini-
mizes AðTminÞ. As noted above, we must have that NSðT  0Þ ¼ NSðTÞ. Thus, Tmin is also
the neighbor ofT  0 that minimizesAðTminÞ. Therefore, we can apply part 1 of Lemma 2.4
for tree T  0 and subtree S , and we conclude that BADT� ðTminÞ ⊆ BADT� ðT  0Þ. Combined
with (2.17) we then have that

BADT� ðTminÞ ⊈ BADT� ðTÞ;
which proves part 2 of Lemma 2.4. ▯

We now prove Claim 2.5.
Proof of Claim 2.5. Let f � in T � be an edge in BADT� ðTÞ that is “closest” to the

leaves in the following precise sense. Say f � joins subtrees S� and Z � in T �, where the
number of vertices in S� is at most the number of vertices in Z�. Then we say the dis-
tance of f � to the leaves is the number of vertices of S�.

Note that by the choice of f �, S� contains no bad edges for T . First, note that S�

must contain at least two leaves because, in any tree, any single leaf can be separated
from the rest of the leaves by deleting one edge (which would contradict that f � is bad).
Let S�

1 and S�
2 denote the two subtrees of S� hanging from the root of S� in T �. Both S�

1

and S�
2 must exist since S� contains at least two leaves.

Let L1 and L2 denote the leaves in S�
1 and S�

2, respectively. Since f
� is the closest bad

edge to the leaves, there is a subtree S1 in T whose leaves are L1 and also a subtree S2

whose leaves are L2. Moreover, by induction, S1 ¼ S�
1 and S2 ¼ S�

2. In T , by pruning S2

and then regrafting along the edge incident to S1, we obtain a copy of S� in T . See
Figure 2.6 for an illustration. Let T  0 be the tree resulting from this SPR move. Note
that f � is now a good edge in T  0.

FIG. 2.6. Construction of the tree T  0 with fewer bad edges.
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It remains to argue that other edges of T� did not change from good for T to bad
for T  0. Note that edges in S�

1 and S�
2 remain good in T  0 since they are realizable in S1

and S2, respectively. Consider an edge e� of T �, where e� ∈= S�. Let ðR1; R2Þ be the parti-
tion of the leaves realized by e� in T �. Note that L1, L2 are in the same partition, since
tree S� is not cut by e�. Let g be the edge in T that realizes ðR1; R2Þ. After pruning-and-
regrafting S2 (to form T  0), g still realizes the partition ðR1; R2Þ since L1 and L2 are
in the same partition. Hence, e� is still good for T  0. Therefore, GOODT� ðT  0Þ ⊇
GOODT� ðTÞ ∪ ff �g, which completes the proof of Claim 2.5. ▯

Finally, we prove that when the number of bad edges increases, then AðTÞ also
increases by a significant amount. As a consequence, in our analysis of the Markov chain,
by taking ε sufficiently small, we can focus on how a transition changes AðTÞ and hence
on the change in the number of bad edges.

LEMMA 2.6. For any trees T and T  0 which differ by one SPR move, if
jBADT� ðT  0Þj > jBADT� ðTÞj, then

AðT  0Þ ≥ AðTminÞ þ αmin:

Proof. Let S be the subtree used to move between T and T  0. Let NSðTÞ denote
those trees obtainable from T by a prune-and-regraft of S. Note that NSðTÞ ¼ NSðT  0Þ.

Consider Tmin, which minimizes AðTminÞ among the SPR neighbors of T which dif-
fer by a prune-and-regraft of S. Since NSðT  0Þ ¼ NSðT  0Þ, then Tmin is also the neighbor
ofT  0 that minimizesAðTminÞ. Fix e ∈ BADT� ðT  0Þ \ BADT� ðTÞ. By part 1 of Lemma 2.4,

BADT� ðTminÞ ⊆ BADT� ðTÞ ∩ BADT� ðT  0Þ. ▯

2.4. Proof of rapid mixing: Theorem 1.1. The proof of our main theorem now
follows from a straightforward argument. We show that the heat bath SPR Markov
chain behaves like a local search algorithm and then a simple coupling argument gives
the mixing result.

Proof of Theorem 1.1. Let T denote the space of phylogenetic trees on n taxa. For a
tree T ∈ T and subtree S of T , let NSðTÞ denote those trees obtainable from T by
pruning-and-regrafting S.

Let C be the constant in the Oð·Þ notation of (2.2) for the chosen αmin and αmax ¼ 1.
By choosing ε0 (note that ε0 is an upper bound on ε) sufficiently small, then for every
tree T , in (2.2), the Cε ln lnð1 ∕ εÞ is smaller than jαminðε ln εÞ ∕ 10j, and therefore

LT ðμ�Þ ¼ Eðπ�Þ þ ðAðTÞ þ δT Þε ln εð2:18Þ

for some jδT j < αmin ∕ 10.
Fix a tree T ≠ T � and a subtree S of T . By Lemma 2.6 and (2.18), for every

T  0 ∈ NSðTÞ where jBADT� ðT  0Þj > jBADT� ðTÞj we have

LT  0 ðμ�Þ < LTmin
ðμ�Þ− ð9 ∕ 10Þαminε lnð1 ∕ εÞ:

For a character σ ∈ Ωn, let DðσÞ ¼ jfi∶Di ¼ σgj. A straightforward application of
Hoeffding’s inequality [9] and a union bound over σ ∈ Ωn implies that, for all δ > 0,

Prðfor allσ ∈ Ωn; jDðσÞ− μ�ðσÞN j ≤ δNÞ ≥ 1− 2 · 4n expð−2δ2NÞ:
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Let qmin ¼ mini;j∈Ω∶i≠j Qi;j denote a lower-bound on the off-diagonal entries in the rate
matrix. For ε0 sufficiently small, every labeling of the leaves has probability at least ε2n;
this follows from the fact that for every edge, every transition has probability ΩðεÞ;
see (2.3) for a precise statement. Hence, by choosing ε0 sufficiently small (relative to
αmin, qmin and the constant in the error term of (2.3)), then for all σ ∈ Ωn,
μ�ðσÞ ≥ ε2n. Let

δ ¼ αminε lnð1 ∕ εÞ ∕ ð20 · 4nn ln εÞ:

Then, for D∼ μ�,

LT  0 ðDÞ < LTmin
ðDÞ− ð7 ∕ 10Þαminε lnð1 ∕ εÞN

with probability ≥1− expð− ffiffiffiffiffi
N

p Þ for N sufficiently large. The probability of moving
from T to T  0 after choosing S in step 1 is at most

expðLT  0 ðDÞÞ
expðLTmin

ðDÞÞ < exp

�
−
�
7

10

�
αminε ln

�
1

ε

�
N

�
< expð−10nÞð2:19Þ

for N sufficiently large. Therefore, with probability ≥1− 4n expð−10nÞ, the chain will
move from T to some Tmin (where Tmin is a tree that can be obtained from T by an SPR
move and such that it minimizes AðTminÞ), and thus by part 1 of Lemma 2.4 the number
of bad edges will not increase. Moreover, if we choose the subtree S satisfying part 2 of
Lemma 2.4, then the number of bad edges will decrease. Hence, with probability
≥1 ∕ ð4nÞ− 4n expð−10nÞ ≥ 1 ∕ ð5nÞ the number of bad edges decreases by at least
one. In expectation, after ≤5n steps of the chain, the number of bad edges will be zero,
in which case we have reached T �. By Markov’s inequality, with probability ≥9 ∕ 10,
after 50n steps we reach T �. Once we reach T � the probability of moving to a different
tree within 50n steps is at most 50nð4nÞ2 expð−10nÞ < 1 ∕ 100. Hence the claimed mix-
ing time follows by an elementary coupling argument (cf. [12] for an introduction to the
coupling technique) since from any pair of initial trees, both chains (run independently)
reach T� at time 50n with probability ≥1− 1 ∕ 2e. ▯

3. Bayesian inference. The goal is often to randomly sample from the posterior
distribution over trees. To do this, we consider a Markov chain whose stationary dis-
tribution is the posterior distribution and analyze the chain’s mixing time, which is a
measure of the convergence time of the chain to its stationary distribution. Let
ΦðT;Q; tÞ denote a prior density, where

X
T

Z
Q∈Q

Z
t
ΦðT;Q; tÞdtdQ ¼ 1:

Our results extend to priors that are lower bounded by some δ > 0 as in Mossel and
Vigoda [14]. In particular, for all trees T and all branch lengths t, where te ≤ t0 for
all edges e, we require ΦðT;Q�; tÞ ≥ δ. We refer to these priors as ðδ; t0Þ-regular priors.

Applying Bayes law we get the posterior distribution

Pr ðT;Q; tjDÞ ¼ μT;Q;tðDÞΦðT;Q; tÞ
PrðDÞ ;
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where

PrðDÞ ¼
X
T  0

Z
Q  0∈Q

Z
t  0
μT  0;Q  0;t 0 ðDÞΦðT  0; Q  0; t 0Þdt 0dQ:

Each tree T then has a posterior weight

wðTÞ ¼
Z
Q∈Q

Z
t
μT;Q;tðDÞΦðT;Q; tÞdtdQ:ð3:1Þ

Finally, the posterior distribution μ on trees is defined as μðTÞ ¼ wðTÞ ∕ PT  0wðT  0Þ.
3.1. Extension of Theorem 1.1 to sampling the posterior. To sample from

the posterior distribution, the Markov chain is defined as in section 1.2 except that in
step 2 the weight wðe�Þ is now set as wðT �Þ defined in (3.1). This ensures that the
Markov chain is reversible with respect to the posterior distribution, and hence this
is the unique stationary distribution.

Theorem 1.1 then extends to hold for any priors which are ðδ; 2ε0Þ-regular. The
proof easily extends to this case in the following manner.

In particular, we need to modify the statement of Lemma 2.1 so that, for any tree T ,
(2.2) is achieved for Q ¼ Q� and for every set of branch lengths t, where te ∈ ðε ∕ 2; 2εÞ
for all edges e. Then we can use the same proof as Lemma 21 in Mossel and Vigoda [14] to
get an analogue of (2.19) to hold for the posterior weights defined in (3.1) in place of the
maximum likelihood function expðLðDÞÞ, and the remainder of the proof of Theorem 1.1
remains the same.

4. Discussion. Nearest neighbor interchangetransitions. In a nearest neigh-
bor interchange (NNI) transition, an internal edge e is chosen. Since internal vertices
have degree three, there are four subtrees hanging off of e. There are three possible ways
of attaching these four subtrees to e, and an NNI transition moves to one of these re-
arrangements. There are trees T (different from the generating tree T �) where no NNI
neighbor (strictly) improves AðTÞ; moreover, there are cases where there is also no im-
provement in the next term of (2.2). We are uncertain as to whether Theorem 1.1 holds
for a Markov chain based on NNI transitions. It would be especially intriguing if there
are cases where chains based on NNI transitions are slow to converge (so-called torpidly
mixing), whereas a chain based on SPR transitions is provably fast to converge (rapidly
mixing).

Possible future work. There are now several works with proofs of convergence of
MCMC algorithms for phylogenetic reconstruction in certain settings—rapid mixing
results in this paper and torpid mixing results in Mossel and Vigoda [13], [14] and
Štefankovič and Vigoda [19], [20]). All of these results require that the branch lengths
are sufficiently small so that only the dominant terms of the likelihood function need to
be considered. A natural avenue for extending this paper is to allow arbitrary branch
lengths on the terminal edges.

Rapid or torpid mixing for general pure distributions. The most tantalizing
question to the authors is whether there exists a pure distribution (i.e., a single gener-
ating tree as in the setting of this paper) where Markov chains based on all of the natural
transitions (e.g., NNI, SPR, and tree bisection reconnection transitions) are slow to con-
verge to the stationary distribution (in other words, they are torpidly mixing). We ex-
pect simulations can be quite useful for finding such a bad example if one exists; in fact,
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our previous work [19], [20] on this topic was inspired by some intriguing findings from
some simple simulations.
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