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Abstract. Westudy embeddings of graphs in surfaces up toZ2-homology.
We introduce a notion of genus mod 2 and show that some basic results,
mostnoteworthyblock additivity, hold forZ2-genus.Thishas consequences
for (potential) Hanani-Tutte theorems on arbitrary surfaces.

1 Introduction

A graph G embeds in a surface S if it can be drawn in S so that no pair of edges
cross. In this paper we want to relax the embedding condition using Z2-homology,
that is, we are only interested in the parity of the number of crossings between
independent edges; in terms of algebraic topology we are studying the “mod 2
homology of the deleted product of the graph” [1]. We say a graph Z2-embeds
in S if it can be drawn in S so that every pair of independent edges crosses
evenly. This approach is inspired by two Hanani-Tutte theorems which, for the
plane [2] and the projective plane [3], show that embeddability is equivalent to
Z2-embeddability. For other surfaces, it is only known that Z2-embeddability is
a necessary condition for embeddability. In this paper we want to lay the foun-
dations for a study of Z2-embeddings of graphs in surfaces which may, at some
point, lead to a proof of the Hanani-Tutte theorem for arbitrary surfaces. Our
main result is that if we define the notion of Z2-genus as a homological invariant
of Z2-embeddings, then block additivity holds for Z2-genus just as it does for the
standard notion of genus (as proved by Battle, Harary, Kodama and Youngs for
the orientable case, and by Stahl and Beineke in the non-orientable case, see [4,
Section 4.4]). This implies that a counterexample to the Hanani-Tutte theorem
on an arbitrary surface can be assumed to be 2-connected (Corollary 1).

2 Z2-Embeddings

2.1 Definition

In the introduction we defined a Z2-embedding in a surface S, as a drawing of a
graph G in which every pair of independent edges crosses evenly. In this section,
we want to develop a more algebraic version of this definition, which separates
the topology of the surface from the drawing. We start with the plane, and then
add crosscaps and handles.



Pick an initial drawing D of G = (V,E) in the plane. For edges e, f ∈ E let
iD(e, f) be the number of crossings of e and f in the drawing D. We want to
extend the drawing to a surface S with c crosscaps. Since we only plan to keep
track of the parity of the number of crossings of independent edges and hence
we use Z2-homology. For each edge we have a vector ye ∈ Z

c
2 where (ye)i = 1

if e is pulled through the i-th crosscap an odd number of times (in a drawing,
we can deform e so it passes through the i-th crosscap; this changes the crossing
parity of e with any edge that passes through the i-th crosscap an odd number of
times). We also allow changing the planar part of the drawing—for each edge we
have a vector xe ∈ Z

V
2 where (xe)v = 1 indicates that we made an (e, v)-move,

that is, we pull the edge e over v (this changes the crossing parity between e and
any edge incident to v). We say that the initial drawing together with {xe}e∈E

and {ye}e∈E is a Z2-embedding of G in S if for each pair of independent edges
e = {u, v}, f = {s, t} we have

iD(e, f) + (xe)s + (xe)t + (xf )u + (xf )v + yTe yf ≡ 0 (mod 2). (1)

All congruences in this paper are modulo 2, so to simplify notation, we drop
(mod 2) from now on. See Figure 1 for a Z2-embedding of K5 in the projec-
tive plane, illustrating the effect of crosscap- and (e, v)-moves. This definition is
equivalent to the more intuitive definition given in the introduction (see, for ex-
ample, Levow [5, Theorem 3]). We say that the drawing is orientable if yTe ye ≡ 0
for every e ∈ E (that is, every ye has an even number of ones).

Handles can be dealt with in the following way: For each handle we have
three coordinates in ye and the possible settings for these coordinates are 000,
110, 101, and 011. We extend the definitions of Z2-embeddings and orientabil-
ity given earlier to ye containing handles. Note that each of the four vectors
modeling an edge passing through handle has an even number of ones, so if the
surface contains only handles, then any drawing on it is orientable by the earlier
definition.

A handle and a crosscap are equivalent to three crosscaps (Dyck, see [6, Section
1.2.4]): in the Z2-homology this corresponds to the following bijection (we replace
the 3 + 1 coordinates in ye by 3 coordinates in ye):

000 0 ↔ 000, 000 1↔ 111, 011 0↔ 011, 011 1↔ 100,

110 0 ↔ 110, 110 1↔ 001, 101 0↔ 101, 101 1↔ 010,
(2)

where the first three coordinates on the left hand sides correspond to the handle.
Note that (2) preserves the parity of the number of ones (and thus the orientabil-
ity of the drawing). Also note that (2) is linear (add vector 111 times the last
coordinate to the vector of the first three coordinates) and hence preserves the
dimension of the space generated by the {ye}e∈E .

Remark 1 (Z2-drawings). Call a drawing D of a graph G in the plane together
with {xe}e∈E and {ye}e∈E a Z2-drawing, and define iD,x,y(e, f) := iD(e, f) +
(xe)s+(xe)t+(xf )u+(xf )v+yTe yf . With this notion of Z2-drawing, we can model
drawings of graphs in a surface up to the Z2-homology we are interested in: IfD is
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Fig. 1. (a) shows the initial drawing of G = K5 in the projective plane. (b) shows a Z2-
embedding of G in the projective plane with (x02)1 = (x24)3 = 1, y03 = y14 = y24 = 1
(dropping the subscript for the single crosscap) and all other values being zero.

a drawing of a graph G in some surface S, then there is a Z2-drawing (D′, x, y)
of G in S so that iD(e, f) ≡ iD′,x,y(e, f) for every pair (e, f) of independent
edges. As mentioned earlier, a result like this (with a slightly different model)
was stated by Levow [5]. In the plane, algebraic topologists would phrase this
as saying that any two drawings differ by a coboundary, or that they define the
same cohomology class in the second symmetric cohomology, see, for example, [7,
Section 4.6].

By the observations in Remark 1, any embedding in a surface S can be con-
sidered a Z2-embedding, so that having a Z2-embedding is a necessary condition
for embeddability in a surface. Hanani-Tutte theorems state that this condition
is also sufficient. As we mentioned earlier, this is only known for the plane [2]
and the projective plane [3].

Remark 2 (Crosscaps versus Handles in Z2-Embeddings). Suppose that a surface
S contains c crosscaps and h handles. By the classification theorem for surfaces,
each handle is equivalent to two crosscaps, as long as c > 0. The same is true
for Z2-embeddability: If c > 0, then Z2-embeddability in S is equivalent to Z2-
embeddability in a surface with c + 2h crosscaps—we apply (2) and convert
each handle into 2 crosscaps; the transformation is possible because c > 0.
If c = 0, then Z2-embeddability in S is equivalent—again using (2)—to Z2-
embeddability in a surface with 2h+ 1 crosscaps where drawings are restricted
to be orientable. The orientability ensures that when applying (2) to convert



crosscaps into handles, the single crosscap left at the end is not used by any
edge and hence can be discarded.

With this terminology, we can now define Z2-homological variants of the genus
and the Euler genus of a graph. We write g(G) and eg(G) for the traditional
genus and Euler genus of G (following [4]).

Definition 1 (Z2-genus andZ2-Euler genus). If a graphG has aZ2-embedding
in an orientable surface with h handles, but not in any surface with fewer handles,
we write g0(G) = h and call h the Z2-genus of G. If G has a Z2-embedding in a
surface S with c crosscaps and h handles, but not in any surface with a smaller
value of 2h+ c, we write eg0(G) = 2h+ c and call 2h+ c the Z2 Euler genus of G.

By definition, we have g0(G) ≤ g(G) and eg0(G) ≤ eg(G), where g(G) is the
genus of G and eg(G) is the Euler genus of G.

2.2 Basic Properties

We derive some basic properties of Z2-embeddings. We call two graphs G and
H disjoint if V (G) ∩ V (H) = ∅.
Lemma 1. Let G be a graph Z2-embedded in a (possibly non-orientable) surface
S. Let C1 and C2 be two disjoint cycles in G. Then

∑

e∈C1,f∈C2

yTe yf ≡ 0. (3)

Let e1 ∈ C1 and e2 ∈ C2. Suppose that all edges e in C1 \ {e1} have ye = 0 and
all edges f ∈ C2 \ {e2} have yf = 0. Then

yTe1ye2 ≡ 0. (4)

Proof. We have
∑

e∈C1,f∈C2

(
iD(e, f) + (xe)s + (xe)t + (xf )u + (xf )v + yTe yf

) ≡ 0, (5)

where s, t are endpoints of f and u, v are endpoints of e (note that s,t,u and v
vary over the terms in the sum). The equality in (5) follows from the disjointness
of C1 and C2 (any e ∈ C1 and f ∈ C2 are independent and hence (1) has to be
satisfied).

We have
∑

e∈C1,f∈C2

(iD(e, f) + (xe)s + (xe)t + (xf )u + (xf )v) ≡ 0, (6)

since (6) corresponds to a drawing in the plane (and two transversally intersect-
ing cycles in the plane intersect evenly; the cycles have to intersect transversally
since they are disjoint).

Combining (5) with (6) we obtain (3). Equation (4) is an immediate corollary
(since terms in (3) other than yTe1ye2 are zero). �	



Lemma 1 suggests that orthogonality plays a role in understanding
Z2-embeddings. We will need the following fact about vector spaces over finite
fields (see [8, Section 2.3]).

Lemma 2. Let A be a subspace of Zt
2. Then for A⊥ := {x ∈ Z

t
2 | (∀y ∈ A) xT y ≡

0} we have

dimA+ dimA⊥ = t.

Let A,B be subspaces of Z
t
2 with A ⊆ B. Then for A⊥B := {x ∈ B | (∀y ∈

A) xT y ≡ 0} = A⊥ ∩B we have

dimA+ dimA⊥B = dimB + dim radB,

where radB := B⊥B is the radical of B.

The dimension of the Z2-embedding (the dimension of the space spanned by
{ye}e∈E) is closely related to its Z2-genus. In Lemma 3 we extend this result to
Z2-Euler genus.

Lemma 3. Let G be a graph Z2-embedded in a (possibly non-orientable) surface
S. Assume that the drawing is orientable. Let d be the dimension (over Z2) of the
vector space generated by the edge vectors {ye}e∈E. Then G can be Z2-embedded
in an orientable surface of genus �d/2
.
Proof. In the light of Remark 2 we can assume that S has t crosscaps (and no
handles). We are going to remove the crosscaps from S one by one. Let S be
the space generated by the edge vectors {ye}e∈E . Let d = dimS. Let T = S⊥

be the space of vectors that are perpendicular to S. Assume that T contains a
vector z such that z �≡ 0 and zT z ≡ 0 (the computations are in Z2). Rearranging
coordinates, if necessary, we can assume that z1 = 1. To each ye for which
(ye)1 = 1 we add z. This transformation has the following properties:

– it is linear (y �→ y + y1z) and hence the dimension of S cannot increase,
– it preserves orientability (since (y + z)T (y + z) ≡ yT y),
– it preserves the parity of the number of crossings for every independent pair

of edges e, f (since (ye + z)T (yf + z) ≡ yTe yf and (ye + z)T yf ≡ yTe yf ; here
we use the fact that T = S⊥).

After the transformation, the first crosscap is not used by any edge and hence
we can remove it thus decreasing t. We repeat the crosscap removal process as
long as such a z exists. We distinguish three cases depending on whether the
process stops with d ≤ t− 2, d = t− 1 or d = t.

If d ≤ t− 2, then T always contains z �= 0 with zT z ≡ 0 (since by a dimension
argument there are two distinct vectors z1, z2 in T \{0} and then one of z1, z2, z1+
z2 satisfies zT z ≡ 0) and hence we can always remove a crosscap in this case.
Therefore, the process ends up with either d = t or d = t − 1, T = 〈z〉, and
zT z ≡ 1. If d = t, then we convert the crosscaps back into �d/2
 handles (if t
is odd we end up with (t − 1)/2 handles, if t is even we add an extra crosscap



and end up with t/2 handles, in both cases use Remark 2 on being able to drop
a crosscap in an orientable embedding).

The final case to handle is d = t − 1. Let k be the number of ones in z.
W.l.o.g. the first k coordinates of z are 1 and the rest are 0. Note that k is odd
and that zT ye ≡ 0 for each e (that is, if we restrict our attention to the first k
crosscaps, the drawing is orientable). Hence we can convert the first k crosscaps
into (k − 1)/2 handles. Then—as in the d = t case—we convert the remaining
t− k crosscaps into �(t− k)/2
 handles. In total, we have

(k − 1)/2 + �(t− k)/2
 = �(t− 1)/2
 = �d/2

handles. �	

For non-orientable surfaces we have the following analogue of Lemma 3, re-
placing the notion of genus by Euler genus.

Lemma 4. Let G be a graph Z2-embedded in a (possibly non-orientable) sur-
face S. Let d be the dimension (over Z2) of the vector space generated by the
edge vectors {ye}e∈E. Then G can be Z2-embedded in a (possibly non-orientable)
surface of Euler genus d.

Proof. The proof is almost the same as the proof of Lemma 3. We first convert
handles to crosscaps and work on a surface with crosscaps only. We again remove
crosscaps one by one until we end up with d = t or with d = t− 1, T = 〈z〉, and
zT z ≡ 1. In the case that d = t we are done.

In the case d = t− 1 we assume, as in the proof of Lemma 3, that the first k
coordinates of z are 1 and the rest are 0 and convert the first k crosscaps into
(k−1)/2 handles. We leave the remaining crosscaps as they are. The Euler genus
of the resulting surface is 2((k − 1)/2) + t− k = t− 1 = d. �	

We end this section with a more complex move that allows us to zero out the
labels of all edges in a spanning forest.

Lemma 5. Suppose G is Z2-embedded on a surface S, and F is a spanning
forest of G. Then there is a Z2-embedding of G on S in which all edges of F are
labeled with zero vectors.

Proof. By Remark 2 we can assume that S is a surface with c > 0 crosscaps.
Choose z ∈ Z

c
2 and v ∈ V . Consider the following collection of moves: 1) add

z to ye for all e that are adjacent to v, and 2) for every f not adjacent to v
and so that yTf z ≡ 1 perform an (f, v)-move. This collection of moves preserves
the parity of the number of crossings between any pair of independent edges.
Moreover, if z contains an even number of ones, the parity of the number of
ones in no y-label is changed. Pick a root for each component of F , orient the
edges of F away from the root, and process the edges in each component in a
breadth-first traversal; for each edge e in this traversal, we turn its label into
the zero vector, by performing the collection of moves above with z = ye and v
the head of e. Note that this changes the label of e into the zero vector, without



affecting the labels of any edges that have already been processed (since F is
a forest, and yTf z ≡ 0 for edges f already processed, because yf = 0 for those
edges). If the Z2-embedding was orientable to begin with, it remains so, since z
is chosen from the set of existing labels, all of which contain an even number of
ones originally and throughout the relabeling. �	

3 Block Additivity mod Z2

As a warm-up we show the additivity of genus over connected components (a
result that is nearly obvious for embeddings).

Lemma 6. The Z2-genus of a graph is the sum of the Z2-genera of its connected
components.

Proof. Let G be a graph. Let g := g0(G) be the Z2-genus of G. By Remark 2
we have an orientable drawing of G on the surface with t := 2g + 1 crosscaps.
Assume that G is the disjoint union of G1 and G2. Let F1 be a maximum
spanning forest of G1 and F2 be a maximum spanning forest of G2. We can
assume (see Lemma 5) that the ye-labels for edges e in F1 and F2 are zero.

Let e1 be an edge in G1 −F1 and let e2 be an edge in G2 −F2. Let C1 be the
unique cycle in F1 + e1 and let C2 be the unique cycle in F2 + e2. Note that C1

and C2 are disjoint (since G1 and G2 are disjoint) and hence by Lemma 1 we
have

yTe1ye2 ≡ 0; (7)

that is, the vectors ye1 and ye2 are perpendicular. Let S1 be the vector space
generated by the ye-labels on the edges in G1 and let S2 be the vector space
generated by the ye-labels on the edges in G2. Then S1 ⊥ S2 and hence

dimS1 + dimS2 ≤ t = 2g + 1. (8)

By Lemma 3, we can Z2-embed Gi in an orientable surface with �(dimSi)/2

handles. Note

�(dimS1)/2
+ �(dimS2)/2
 ≤ g

and hence g0(G1) + g0(G2) ≤ g0(G). �	
Again, one also has the analogue of Lemma 6 for non-orientable surfaces.

Lemma 7. The Z2-Euler genus of a graph is the sum of the Z2-Euler genera of
its connected components.

Proof. The proof is the same as the proof of Lemma 6 except the final part. We
have

dimS1 + dimS2 ≤ t, (9)

where t := eg0(G) is the Z2-Euler genus of G. By Lemma 4 we can draw Gi in
a surface with dimSi crosscaps. Hence eg0(G1) + eg0(G2) ≤ eg0(G). �	



We are ready now to establish additivity of Z2-genus and Z2-Euler genus over
2-connected components (blocks).

Theorem 1. The Z2-genus of a graph is the sum of the Z2-genera of its blocks.
The Z2-Euler genus of a graph is the sum of the Z2-Euler genera of its blocks.

Proof. There is a large shared part in the arguments for Z2-genus and Z2-Euler
genus (only the initial setup and the final drawing step are different).

The initial setup for the Z2-genus case is the following. Let G = (V,E) be a
connected graph (we can assume this by Lemma 6) and let g := g0(G) be the
Z2-genus of G. Thus we have an orientable Z2-embedding of G on the surface
with t := 2g + 1 crosscaps. Let B be the subspace of Zt

2 consisting of vectors
with an even number of ones (we will keep our drawing orientable, that is, all
the edge labels will be from B). Note that

radB = {0}, (10)

since each vector in B \ {0} has a zero and a one. Let t̂ := dimB = t− 1.
The initial setup for the Z2-Euler genus case is the following. Let G = (V,E)

be a connected graph (Lemma 7), and let g := eg0(G) be the Z2-Euler genus of
G. Thus we have a Z2-embedding of G on the surface with t crosscaps. In this
case we let B := Z

t
2. (And we trivially have (10).) Let t̂ := dimB = t.

Let v be a cut vertex of G. Let G1 = (V1, E1) be a block of G containing v
and let G2 = (V2, E2) be the union of the remaining blocks (note that V1 ∩V2 =
{v}). Let T = (V, F ) be a depth-first search (DFS) spanning tree of G with
the exploration starting at v. We can assume ye = 0 for the edges in F (see
Lemma 5). The reason for taking a DFS spanning tree is that we will need the
following property: if e ∈ E \ F is not adjacent to v then the unique cycle in
F + e does not contain v.

Let Si be the vector space generated by the ye-labels of e ∈ Ei that are not
adjacent to v. Let Zi be the vector space generated by the ye-labels of e ∈ Ei

that are adjacent to v. See Figure 2. Our plan is to modify the ye-labels of the
edges adjacent to v (changing Z1, Z2) so that: 1) no new odd crossings between
independent edges are introduced, and 2) after the modification dim(S1 +Z1)+
dim(S2 + Z2) ≤ t.

We can modify the ye of an edge e adjacent to v by adding any vector in
O := (S1 + S2)

⊥B. This does not change the parity of the number of crossings
between independent pairs of edges (for f that are not adjacent to v we have
yTf (ye + z) ≡ yTf ye; and f which are adjacent to v are not independent of e).
Note that the modification in the Z2-genus case also preserves orientability (by
choice of B).

We are going to modify the ye-labels of edges adjacent to v (by adding vectors
in O) as follows. For i ∈ {1, 2} we do the following. Let a := dim(Zi ∩ Si),
b := dim(Zi ∩ (Si + O)), and c := dim(Zi). Let z1, . . . , zc be a basis of Zi such
that 1) z1, . . . , za is a basis of Zi∩Si, 2) z1, . . . , zb is a basis of Zi∩ (Si+O), and
3) za+1, . . . , zb ∈ Zi ∩O. Such a basis can be constructed as follows: first apply
the Steinitz exchange lemma on a basis of Zi ∩ Si and a basis of Zi ∩ O (the
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Fig. 2. Graph G with cutvertex v, block G1 and union of remaining blocks G2. Vector
space Zi (Si) is generated by labels of edges in Gi (not) incident to v.

basis of Zi ∩ Si will be extended by vectors in the basis of Zi ∩ O to a basis of
Zi∩(O+Si)); then apply the Steinitz exchange lemma on the resulting basis and
a basis of Zi. For each edge in Gi adjacent to v we relabel ye = α1z1+ · · ·+αczc
by setting αa+1 = αa+2 = · · · = αb = 0 (note that this corresponds to adding
an element of O to ye). After the modification (which also changed Zi) we have
that z1, . . . , za is a basis of Zi ∩ (Si + O) and also a basis of Zi ∩ Si. Thus we
have

Zi ∩ (Si +O) = Zi ∩ Si. (11)

Let e1 ∈ E1\F and let e2 ∈ E2\F be such that e2 is not adjacent to v. Let C1

be the unique cycle in F +e1 and let C2 be the unique cycle in F +e2. Note that
C2 does not contain v (since F is a DFS spanning tree and e2 is not adjacent to
v). Thus C1 and C2 are disjoint (C1 is in G1, C2 is in G2 and V1 ∩ V2 = {v})
and hence, by Lemma 1, we have

yTe1ye2 ≡ 0.

Thus (Z1+S1) ⊆ S⊥B
2 and since O ⊆ S⊥B

2 (by the definition of O) we also have
(Z1 + S1 + O) ⊆ S⊥B

2 . By symmetry we also have (Z2 + S2 + O) ⊆ S⊥B
1 and

hence, by Lemma 2 and (10), we obtain

dim(Zi + Si +O) + dim(S3−i) ≤ t̂. (12)

Thus we have (using dim(A+B) = dim(A) + dim(B)− dim(A ∩B))

dim(Zi) + dim(Si +O)− dim(Zi ∩ (Si +O)) + dim(S3−i) ≤ t̂,

and (11) yields

dim(Zi) + dim(Si +O)− dim(Zi ∩ Si) + dim(S3−i) ≤ t̂. (13)

Adding (13) for i = 1, 2 and simplifying (again using dim(A + B) = dim(A) +
dim(B)− dim(A ∩B)) we obtain

dim(Z1 + S1) + dim(Z2 + S2) + dim(S1 +O) + dim(S2 +O) ≤ 2t̂. (14)



We have

dim(S1 +O) + dim(S2 +O)

= dim(S1) + dim(O) − dim(S1 ∩O) + dim(S2) + dim(O) − dim(S2 ∩O)

= dim(S1 + S2) + dim(S1 ∩ S2) + 2 dim(O) − dim(S1 ∩O)− dim(S2 ∩O)

= t̂+ dim(S1 ∩ S2) + dim(O) − dim(S1 ∩O)− dim(S2 ∩O)

≥ t̂+ dim(S1 ∩ S2 ∩O) + dim(O) − dim(S1 ∩O)− dim(S2 ∩O)

= t̂+ dim(O) − dim((S1 + S2) ∩O) ≥ t̂,

where in the first, second, and fourth equality we used dim(A+B)+dim(A∩B) =
dim(A)+dim(B); in the third equality we used dim(S1+S2)+dim(O) = t̂ (which
follows from the definition of O and Lemma 2); in the first and the last inequality
we used the monotonicity of dimension,

Plugging dim(S1 +O) + dim(S2 +O) ≥ t̂ into (14) we obtain

dim(Z1 + S1) + dim(Z2 + S2) ≤ t̂ ≤ t. (15)

The Z2-genus case of the lemma now follows from Lemma 3, using the argument
from the proof of Lemma 6 (the final part after equation (8)) giving us Z2-
embeddings of G1 and G2 on two surfaces which have g handles total. In the
Z2-Euler genus case we apply Lemma 4, using the argument from the proof of
Lemma 7 (the final part after equation (9)). �	

The Hanani-Tutte theorem for surface S would—if true—state that if a graph
has a Z2-embedding on surface S, then it can be embedded on S. Theorem 1
implies that in a search for counterexamples we can concentrate on 2-connected
graphs. For the projective plane this result was obtained using much simpler
means in [3, Lemma 2.4].

Corollary 1. A minimal counterexample to the Hanani-Tutte theorem on any
surface S is 2-connected.

Proof. Suppose G is a minimal counterexample to Hanani-Tutte on some surface
S. If G is not connected, let G1, . . . , Gk, k ≥ 2 be its connected components.
If S is orientable, let g be the genus of S. Then g ≥ g0(G) =

∑k
i=1 g0(Gi) =∑k

i=1 g(Gi) = g(G), where the first equality is true by Lemma 6, and the second
equality because G is minimal (and the third is a standard property of the genus
of a graph). Therefore, g(G) ≤ g, so G can be embedded in S, meaning it
cannot be a counterexample. If S is non-orientable we can make essentially the
same argument with Lemma 7 replacing Lemma 6, and Euler genus replacing
genus. If G is connected, but not 2-connected, we repeat the same argument
with Theorem 1 replacing the two lemmas, and using block additivity of (Euler)

genus to conclude that
∑k

i=1 g(Gi) = g(G) where the Gi are the blocks of G
having cutvertex v in common. �	



4 Questions

The (Euler) genus of a graph is an obvious upper bound on the Z2-(Euler) genus
of a graph, but are they always the same?

Conjecture 1. The Z2-(Euler) genus of a graph equals its (Euler) genus.

The truth of this conjecture would imply the Hanani-Tutte theorem for arbi-
trary surfaces, so we have to leave the question open. The block additivity result
from Section 3 implies that a minimal counterexample to the conjecture (if it
exists) and, thereby, to the Hanani-Tutte theorem on an arbitrary surface, can
be assumed to be 2-connected (since it cannot have a cut-vertex).

A much more modest goal than Conjecture 1 would be to bound the standard
(Euler) genus in the Z2-(Euler) genus: Are there functions f and g so that
g(G) ≤ f(g0(G)) and eg(G) ≤ g(eg0(G))?

In the absence of a proof of Conjecture 1, we can ask what other results for
(Euler) genus also hold for Z2-(Euler) genus. For example, is the computation
of the Z2-(Euler) genus NP-hard (as it is for (Euler) genus [9])? And is Z2-
embeddability decidable in polynomial time for a fixed surface S (as it is for
embeddability [10])? One could also try to extend the block additivity result: if
G1 and G2 are two edge-disjoint graphs with |V (G1)∩V (G2)| = 2, is it true that
|g0(G) − (g0(G1) + g0(G2))| ≤ 1? (This inequality is known to be true for the
standard genus, a result by Decker, Glover, Huneke, and Stahl, see [4, Section
4.4]).
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