On the Complexity of
Multi-Dimensional Interval Routing Schemes

Abstract

Multi-dimensional interval routing schemes (MIRS) introduced in [4] are an extension of inter-
val routing schemes (IRS). We give an evidence that multi-dimensional interval routing schemes
really help for certain well-known interconnection networks, e.g. for n-dimensional butterfly there
exists a full-information shortest path (2, 3)-DIS-MIRS, while in [12] it was shown that a shortest
path TRS needs ©(2"/2) intervals. Further, we compare the DIS-MIRS model and the CON-
MIRS model introduced in [4]. The main result is that the DIS-MIRS model is asymptotically
stronger than the CON-MIRS model. We prove this by showing that for n-dimensional cube-
connected-cycles there exists a full-information shortest path (2n3,n)-DIS-MIRS while for any

full-information shortest path (k,d)-CON-MIRS it holds kd = Q(Z\/m) We also show that for
n-dimensional star any full-information shortest path (k, d)-CON-MIRS requires kd = Q(2"/3).

The congestion is a common phenomenon in networks which can completely degrade their per-
formance. Therefore it is reasonable to study routing schemes which are not necessarily shortest
path, but allow high network throughput. We show that there exists a (2,n + 2)-DIS-MIRS of
n-dimensional cube-connected-cycles with asymptotically optimal congestion. Moreover, we give
an upper bound on the tradeoff between congestion and space complexity of multipath MIRS for
general graphs. For any graph G and given 1 < s < |V| there exists a multipath (2+ [|V|/2s], 1)-
MIRS with congestion F' + |V|- A - s, where F is the forwarding index of the graph G and A
is the maximum degree of vertices in the graph G. As a consequence, for planar graphs of con-
stant bounded degree there exists a multipath (O(y/|V]),1)-MIRS with asymptotically optimal
congestion. We also show that for planar graphs of bounded degree there exists (deterministic)
O(y/[V]log |V |)-IRS with asymptotically optimal congestion.



1 Introduction

Routing messages is a fundamental task in communication networks. It is performed by a decision
procedure by which each node of a network selects the output link to forward a message on its way
to destination. There are certain desirable properties of a routing: correctness, simplicity, quick
delivery of messages, high throughput and low memory requirements.

Sometimes a routing scheme is used to represent the information needed for the routing. In a
routing scheme each vertex has a simple procedure (usually the same for each vertex), local data
(some topological information used by the procedure) and an unique label. For each destination the
procedure (after being fed by the label of this destination) recommends a set of output links along
which the destination can be reached. If in a routing scheme for any destination the recommended
links do not contain a cycle and it is always possible to get to the destination along these links, then
a routing based on this scheme is correct, i.e. every message eventually reaches its destination.

Usually a routing scheme always recommends only one output link. If it is allowed to recommend
more than one output link it is called multipath. A routing based on a multipath routing scheme
must choose one link from the suggested ones. This can be useful for traffic distribution in the
network. As the time needed for the delivery of a message depends on the length of the routing path,
it is reasonable to consider shortest path routing schemes, i.e. schemes which always route messages
along shortest paths. If a scheme represents all shortest paths it is called full-information shortest
path routing scheme.

The routing is usually performed by a special processor which may have limited resources, there-
fore the information stored in each processor (local data) should be as small as possible. Memory
requirements per node of a routing scheme is the maximum of the sizes of local data. The length of
labels (in bits) in a routing scheme should be also small, because header of each message contains the
label of its destination and in each node the list of labels must be stored (implicitly or explicitly).
The size of this list is not counted to the memory requirements per node because it needn’t to be
stored in the special processor.

There are several ways how to implement a routing scheme. An obvious solution is to store
the complete routing table at each node. The table contains for every destination u the identifier
of the output link along which the message targetted to u is forwarded. The size of the table is
O(|V]-logd) bits for a node of degree d, which is too space consuming for some networks. Therefore
other space-efficient (compact) implementations of routing schemes have been studied.

Interval routing scheme is a popular compact routing method defined in [20] and generalized
in [16]. It has been exploited in the C104 Router Chip used in the INMOS T9000 Transputer
design [18]. It is known that in general the shortest path interval routing schemes may have higher
memory requirements than the routing schemes based on complete routing tables [5, 8, 14], but for
some important interconnection networks (e.g. trees, meshes, rings, hypercubes) there exist 1-IRS
with substantially smaller memory requirements [7, 16, 20]. However there are also interconnection
networks (e.g. butterfly, cube-connected-cycles, shuffle-exchange, star) which require many intervals
per link [12].

An extension of interval routing schemes called multi-dimensional interval routing schemes was
introduced in [4] and full-information shortest path schemes were studied. It was shown that for
hypercubes, grids, tori and certain types of chordal rings there are full-information shortest path
MIRSs with low memory requirements. The existence of space-efficient MIRSs for other intercon-
nection networks was brought into question.



1.1 Summary of our results

In section 2 we study full-information shortest path MIRSs on certain interconnection networks
and compare two basic models introduced in [4], namely DIS-MIRS and CON-MIRS. It is shown
that for any CON-MIRS there exists a DIS-MIRS with the same memory requirements per node
and the same routing paths. Furthermore we show that there exist (2,3)-DIS-MIRS, (n, 2)-CON-
MIRS and (2,2|logyn] + 2)-CON-MIRS of n-dimensional butterfly and (2n3,n)-DIS-MIRS of n-
dimensional cube-connected-cycles. Moreover a technique for obtaining lower bounds on the kd for
(k,d)-CON-MIRS of arbitrary graphs is introduced. We apply this technique to (k,d)-CON-MIRS

of n-dimensional cube-connected-cycles and obtain lower bound of the form kd = Q(Z\/m) This
allows us to conclude that the DIS-MIRS model is stronger than the CON-MIRS model when con-
sidering memory requirements of the full-information shortest path routing schemes. Using the same
technique we also show that for full-information shortest path (k,d)-CON-MIRS of n-dimensional
star it holds kd = Q(2"/3).

Routing schemes representing shortest paths may have big memory requirements and may cause
overloading of some links of the network. Therefore in section 3 we consider routing schemes which are
not necessarily shortest path. We construct a (2, n+ 2)-DIS-MIRS of n-dimensional cube-connected-
cycles with congestion (1 + O(lofl ))F where F is the forwarding index of CCC,,. Moreover, we give
an upper bound on tradeoff between congestion and space complexity of multipath MIRSs for general
graphs and we show that for any graph G = (V, E) and given 1 < s < |V there exists a multipath
(2+[|V|/2s],1)-MIRS with congestion F'+ |V|-A - s, where F' is the forwarding index of the graph
G and A is the maximum degree of vertices in the graph G. The consequence of this tradeoff is
that for any planar graph of constant bounded degree there exists a multipath (O(y/|V]),1)-MIRS
with congestion O(F'). In the last subsection we show slightly weaker upper bound on tradeoff for
deterministic routing schemes.

1.2 Definitions

The communication network is modeled by an undirected graph G = (V, E), where vertices in V'
represent nodes and edges in F represent bidirectional communication links. For the sake of simplicity
every edge is considered to comprise two oppositely oriented arcs.

In k-interval routing scheme (k-IRS) each vertex is assigned unique identifier from the set
{1,...,]V|} and each arc is assigned up to k cyclic intervals (cyclic interval is a set of consecu-
tive integers from {1,...,|V|}, where |V| and 1 are considered to be consecutive). The routing in
each vertex is done by sending a message heading to a vertex with some label = along unique arc with
an interval containing x. This is an usual definition which doesn’t allow an IRS to be multipath.

Multi-dimensional interval routing schemes (MIRS) are an extension of interval routing schemes.
There are two basic models introduced in [4]:

e In (k,d)-DIS-MIRS every vertex is labeled by a unique d-tuple (c1, ..., ¢g), where each ¢; is from
the set {1,...,n;} (n; <|V]). Each arc is labeled by up to k d-tuples of cyclic intervals:

(Il,lv sy Id,l)a ceey (Il,ku (XY} Id,k)

In any vertex a message with destination (cy, ..., ¢q) is routed along any outgoing arc containing
d-tuple of cyclic intervals (11, ..., I;) such that ¢; € I; for all i.

e In (k,d)-CON-MIRS every vertex is labeled by a unique d-tuple (ci,...,¢q), where each ¢; is
from the set {1,...,n;} (n; <|V]). Each arc is labeled by d-tuple of up to k cyclic intervals:

(g, Lt dans s Lakt)



In any vertex a message with destination (ci, ..., ¢q) is routed along any outgoing arc such that
for all 7 the label ¢; is contained in the union of intervals in the i-th dimension.

Notice, that MIRS can be multipath. The bit length of labels of a (k, d)-MIRS is logy n1 + logy na +
... +1ogy ng and the memory used per vertex in bits is 2k(logy n1 + logy 1o + ... + logs ng).

Given graph G and a set R of n(n — 1) simple paths connecting every ordered pair of vertices,
define the edge-forwarding index (G, R) as the maximum number of paths passing through any edge
of G (see [11]). The edge-forwarding index (or shortly forwarding index) 7(G) of a graph G is defined
as the minimum 7 (G, R) over all sets R.

If we have a routing scheme p of a graph G, not all simple paths in G are routing paths in p.
Define the congestion cong(p) of a routing scheme p as the minimum 7(G, R) over all sets R of
n(n — 1) routing paths connecting every ordered pair of vertices. Clearly for given graph G and
its routing scheme p it holds: cong(p) > 7(G). The routing is said to have optimal congestion
if cong(p) = w(G). It is said to have asymptotically optimal congestion if cong(p) = O(w(Q)).
This definition of congestion for multipath routing schemes is reasonable under assumption that the
routings using these schemes have good traffic distribution algorithm.

2 Full-Information Shortest Path Routing Schemes

For an efficient routing it is desirable that messages are delivered quickly. As this depends also on
lengths of routing paths, we may require them to be the shortest ones. If we have represented more
paths then the traffic distribution can be more effective. Therefore we will consider the problem
of representing all shortest paths between every pair of vertices. This problem has been studied in
literature as full-information shortest path routing schemes, or overall optimum routing schemes [4].

2.1 Multi-Dimensional Interval Routing Schemes of General Graphs
2.1.1 Comparison of the models

We show that for any CON-MIRS of any graph there exists a DIS-MIRS with the same memory
requirements per vertex and the same routing paths. The converse does not hold, an example is
full-information shortest path routing of cube-connected-cycles. For & = 1 or d = 1 it holds that

(k,d)-CON-MIRS=(k, d)-DIS-MIRS therefore in these cases we write only (k,d)-MIRS.

Lemma 1 If a graph G has a (k,d)-CON-MIRS then it has a (1, kd)-MIRS with the same memory
requirements per vertexr and the same routing paths.
Proof:

k k
A vertex with the label (cq,...,¢4) in CON-MIRS will have the label (m, ,M) in the
new MIRS. Let I;1,...,1; be the intervals in the i-th dimension of the label of some arc e. The
complement of their union can be expressed as an union of at most k intervals J;1,..., J; ;. In the
new MIRS the arc e will be labeled in dimension k(i — 1) + j, 1 < j < k by the complement of the
interval J; ;. The union of intervals I; ;, 1 < j < k is the same set as the intersection of intervals
written in the new MIRS in dimensions k(i — 1) 4+ 1, ..., ki therefore the new MIRS has the same
routing paths as the original one. The memory requirements are the same. O

2.1.2 Matrices of constraints

Matrices of constraints are a useful tool in proving lower bounds for (full-information) shortest path
routing schemes [5, 8, 13]. Given an arc e = (u,w) and a vertex v of the graph G there are only two
possibilities for full-information shortest path routing scheme:



1. There exists a shortest path from u to v using the arc e. (In this case it must be possible to
reach v along e in such routing scheme.)

2. There does not exist a shortest path from u to v using the arc e. (In this case v cannot be
reached along e in such routing scheme.)

Let A = {e1,...,eq} and B = {v1,...,v,} be subsets of arcs and vertices of G respectively. Matriz
of constraints of a given graph G and sets A, B is a p X ¢ boolean matrix M with rows labeled by
vertices from B and columns labeled by arcs from A such that M; ; = 1 iff the first possibility holds
for the arc e; and the vertex v;.

2.1.3 General bound

It is known that shortest path routing imposes high memory requirements for any routing scheme.
Similar proofs as the one presented in this section are in [2, 8, 13].

Claim 1 Given any p X q boolean matrix M we can construct a (p + 2q)-vertex graph Gy; with the
matriz of constraints M.

Consider the graph G with vertices: a1, ..., a¢,0,01,1, ..., @g,1 and b1, ..., b,. There is an edge between
a;0 and a; for i € {1,...,q} and every vertex a;, is connected to every b; for which M;; = k. For
sets A = {(aj0,01)|1 <j <q}and B = {b;|1 <i < p} the matrix of constraints of G and sets A, B
is M.

Theorem 1 There exist graphs for which each (k,d)-CON-MIRS and (k,d)-DIS-MIRS requires
kd = Q(|V|/log |V])

Proof:

The proof uses incompressibility method [2, 17]. Consider o(n?)-random n x n boolean matrix M
and the graph Gjs from claim 1 having M as the matrix of constraints. Let there be some (full-
information) shortest-path (k,d)-DIS-MIRS (or (k,d)-CON-MIRS). If we are given the list of labels
of vertices by, ..., by and labels of arcs (ai0,a;,1),i € {1,...,n} then we can reconstruct the matrix M
using some simple Turing machine. The list of vertices can be encoded using d - O(nlogn) bits and

the labels of n edges can be encoded using kd - O(nlogn) bits. Therefore from o(n?)-randomness of
the matrix M we have kd - O(nlogn) = Q(n?) and thus kd = Q(n/logn) = Q(|V|/log|V]). O

2.2 Multi-Dimensional Interval Routing of Butterfly

The n-dimensional butterfly graph (or BF),) has (n + 1)2" vertices and n2""! edges. The vertices
correspond to pairs (w, i), where i € {0, ...,n} is the dimension of the vertex and w is a n-bit binary
number. Two vertices (w, ) and (w’,i’) are connected by an edge if and only if ' =i+ 1 and either
w and w’ are identical or w and w’ differ only in the 'th bit.

The BF> Graph



Consider the following machine:

A
It has a working tape with n cells and a head which can be positioned between cells or at any end of
the tape. Each cell contains one binary digit. In one step head moves to the left or to the right and
writes 0 or 1 to the cell over which it has passed. The graph with vertices corresponding to states
of this machine and arcs corresponding to steps is exactly the n-dimensional butterfly graph. This
allows us to consider vertices being the states of the described machine.

Claim 2 If we have BF,, and a vertex w of the form

4
T ol

then to the vertices of the forms:

A:

head is here

’ anything, but ua anything

head is here

anything 0 v

there exist shortest paths from w starting with the arc e corresponding to moving the head to the left
and writing zero. These are only such vertices.

If we want to have a full-information shortest path routing, we must route precisely messages
destinated to these vertices along the arc e. Characterization of the vertices whose messages are to
be routed along arcs of other types is similar. Now we shortly describe (2, 3)-DIS-MIRS, (n, 2)-CON-
MIRS and (2,2[logy 1| + 2)-CON-MIRS of BF,.

Theorem 2 For BF, there exists a (2,3)-DIS-MIRS with the length of labels 2n+1logy n+O(1) bits
and memory required per vertex O(n) bits.

Proof:
Label the vertices in individual dimensions as follows:

e 1st dimension: The number written on the tape.
e 2nd dimension: The number written on the tape read backwards.
e 3rd dimension: position of the head.

For any vertex w and arc e from Claim 2 it is possible to select vertices of the forms A and B
using two triples of intervals. First triple selects vertices not starting with ua (these form a cyclic
interval in 1st dimension) and not having head to the left of w’s head (these form a cyclic interval
in 3rd dimension). Second triple selects vertices ending with Ov (these form a cyclic interval in 2nd
dimension) and having head to the left of w’s head.

For other types of arcs the construction is similar. The bit length of the labels of the described
routing scheme is 2n + logy n + O(1) and therefore memory used per vertex in bits is O(n). O



Theorem 3 For BF, there exists a (n,2)-CON-MIRS with the length of labels 2n + 2logy n+ O(1)
bits and memory required per vertex O(n?) bits.

Proof:
In the first dimension vertices are labeled by numbers 1, ..., |V | according to the lexicographic ordering
with the first criterion being the position of the head and with the second criterion being the number
written on the tape. For the labeling in the second dimension the second criterion is the number
written on the tape read backwards. In both dimensions of this labeling vertices having the same
position of the head form a block.

For any vertex w and arc e from Claim 2 it is possible to select vertices of the forms A and
B using at most n intervals in each dimension. In the second dimension in each block containing
vertices whose head is to the left of the position of w’s head put the interval selecting the vertices
ending with Ov. In the first dimension in each block containing vertices whose head is not to the left
of the position of w’s head select vertices not starting with ua. At most n intervals suffice, because
the vertices which were not selected can be covered using at most n intervals.

For other types of arcs the construction is similar. The bit length of the labels of the described
routing scheme is 2n + 2logy n + O(1) and therefore memory used per vertex in bits is O(n?). O

Theorem 4 For BF, there exists a (2,2|logy n|+2)-CON-MIRS with the length of labels 2nlogy n+
O(n) bits and memory required per vertex O(nlogn) bits.

Proof:
In each dimension vertices are labeled by numbers 1, ..., |V|. In the first dimension all vertices having
the head at the same position form a block. In the second dimension all vertices having the head at
positions 2k and 2k+1 form a block for all k. Generally in the i-th dimension (i € {1, ..., [logyn|+1})
vertices having the head at positions 2071k, ..., 2771k 4+ 271 — 1 form a block for all k£ and within
each block vertices are sorted according to the number written on the tape. In second [logsn| + 1
dimensions vertices in blocks are sorted according to the number written on the tape read backwards.

For any vertex w and arc e from Claim 2 it is possible to take at most one block from each of
the first [logy n| + 1 dimensions in such way that in their union there are all vertices having head
not to the left of w’s head. Using two intervals per block we select only those not starting with ua.
Similarly we can select vertices of the form B.

For other types of arcs the construction is similar. The bit length of the labels of the described
routing scheme is 2nlogy n + O(n) and therefore memory used per vertex in bits is O(nlogn). O

2.3 Multi-Dimensional Interval Routing of Cube-Connected-Cycles

The n-dimensional cube-connected-cycles graph (or CCC,,) has n2" vertices and 3n2" ! edges. The
vertices correspond to pairs (w, i), where ¢ € {1,...,n} is the dimension of the vertex and w is a n-bit
binary number. Two vertices (w, i) and (w’,4’) are connected by an edge if and only if either

e i/ =i and w differs from w’ only in the i-th bit (these arcs are called shuffle arcs), or

e w=w and i — i ==+1 (mod n) (these arcs are called left and right arcs respectively).



The CCC5 Graph

As in the previous subsection we can define a machine whose state graph is the n-dimensional cube-
connected-cycles graph. Its working tape is a circular strip consisting of n cells. The head can be
positioned above any cell. Each cell can contain one binary digit. In one step the head can change
the content of the read cell or move one position to the left or to the right. Again we can consider
vertices being the states of the described machine.

Claim 3 Let u,v be two vertices of the CCCy, graph. Take w XOR v (the tape is unwinded on the
picture):
v's head u's head
Y Y
‘ part B | H part A | H part B ‘

l

Denote a,b and o' lengths of the longest runs of consecutive zeros in parts A, B and A'(= A without
the rightmost cell) respectively and b the length of the run of consecutive zeros in part B starting
immediately to the right of the position of u’s head. There exists a shortest path from u to v starting
with the left arc e if and only if either:

A:d=aand2(l+b—a) <n
or

B:V =band 2(l +b—a) > n and u,v don’t differ in the cell pointed by u’s head.

The condition for the existence of a shortest path starting with the right arc is symmetric. There
exists a shortest path from u to v starting with the shuffle arc if and only if u and v differ in the cell
pointed by u’s head. Now we shortly describe (2n3, n)-DIS-MIRS of CCC,,.

Theorem 5 For CCC,, there exists a (2n3,n)-DIS-MIRS with the length of labels n?-+nlog, n+0O(n)
bits and memory required per vertexr O(n®) bits.

Proof:
In the i-th dimension (i € {1,...,n}) vertices have numbers 1, ...,|V| according to the following
lexicographic ordering:

e the first criterion is the position of the head

e the second criterion is the number written on the tape after rotating it cyclicly ¢ bits to the
left



In this labeling in each dimension vertices having the same position of the head form a block. Another
important property of the labeling is that selecting vertices having the head at any given position
and containing (resp. not containing) any given binary substring at any given position of the tape
can be done using at most two intervals in one block of one dimension. The dimension in which
intervals are used is determined by the position of the substring.

Let u be any vertex of the C'CC), graph. Labeling the shuffle arc emanating from u is easy, as exactly
messages to vertices having different symbol at the position of u's head are to be routed along it. As
there exists a dimension such that in each of its blocks such vertices form a cyclic interval, we need
only n intervals per dimension.

Labeling the left arc is more complicated. We select vertices whose messages are to be routed along
this arc for each position of their head independently. If for each given position we need at most
q intervals per dimension to select such vertices then in total we need at most nq intervals per
dimension.

Vertices satisfying rule A and having the head at a given position are be selected as follows:

e We choose the length a’ of the longest run of consecutive zeros in the part A’ of u XOR v
(len(A") + 1 possibilities)

e We choose the position of this run (len(A’) — a’ 4+ 1 possibilities)
e Given a/ and the position of the run, vertices

— having run of @’ zeros at the choosen position

— not having longer run of zeros in the part A

n—21

— not having run of zeros in the part B longer than a + *5

can be selected using two intervals per dimension, because we can fullfill these conditions
selecting vertices having, or not having certain substrings at different positions.

Vertices satisfying rule B and having the head at a given position are be selected as follows:

e We choose the length o’ of the run of consecutive zeros in the part B starting immediately to
the right of the position of u’s head. (len(B) + 1 possibilities)

e Given b/, vertices

— having run of ¥’ zeros in the part B starting immediately to the right of the position of
u’s head

— not having longer run of zeros in the part B

2l—n

— not having run of zeros in the part A longer than b + =5*

— not differing from w« in the cell pointed by u’s head
can be selected using two intervals per dimension, using the same reasoning as in previous case.

It holds (len(A’) + 1)(len(A’) + 1) + len(B) + 1 < n? therefore in total we have used at most
2n3 intervals per dimension which gives us (2n3,n)-DIS-MIRS. The bit length of the labels of the

described routing scheme is n? + nlogyn + O(n) and therefore memory used per vertex in bits is
O(n®). O



2.4 Lower Bounds for the CON-MIRS model

In this subsection we develop a technique for proving lower bounds for the CON-MIRS model. Using
this technique we show that for any full-information (k,d)-CON-MIRS of the n-dimensional cube-

connected-cycles graph it holds kd = Q(2V n/ %) and for any full-information (k, d)-CON-MIRS of the
n-dimensional star graph it holds kd = Q(2"/?).

2.4.1 Technique

Let G be a graph with (k,d)-CON-MIRS. The labels of vertices in [-th dimension define a cyclic
ordering of vertices. Let M be some matrix of constraints of G. By M, ..., My denote matrices
obtained from M by permuting rows so that the labels of rows in M, are in the cyclic order according
to the ordering defined by the [-th dimension labels.

For every matrix M, every arc e; and every vertex v; paint the corresponding entry in the matrix
M green iff [-th dimension of the label of v; is contained in the union of intervals from [-th dimension
of the label of e;.

From the validity of the routing scheme it follows that in every M; and every column of M; green
entries form up to k cyclic intervals (from this also not green entries form up to k cyclic intervals),
all 1’s are green and for every 0 in matrix M there exists M; such that corresponding 0 in this matrix
is not green. Let P(M) be the maximal number of zeros which can be covered using one cyclic
interval per column maximized over all row-permutations of M and let #¢M be the number of zeros
contained in M. Now we can state the following theorem:

Theorem 6 For the graph G with the matriz of constraints M the following bound holds for (k,d)-
CON-MIRS:
#oM

P(M)

kd >

Proof:
In every matrix at most P(M) - k zeros are not green, therefore in d matrices at most P(M) - kd

zeros are not green. Because for every zero in M there must exist M; such that corresponding 0 is
not green we have P(M) - kd > #oM. O

To obtain upper bound on the P(M) for some matrix M we use the following lemma:

Lemma 2 If for some n X n matriz M it is not possible to permute rows and columns to obtain a
matriz containing square of zeros with side of length m then P(M) < 4mn.

Proof:

Take any row permutation of the matrix M and any cover using one interval per column. Divide
the matrix into horizontal slices of height m (some few rows may remain). In each slice the number
of columns which are fully covered is smaller than m therefore less than mn zeros are of this kind.
In each column there are at most two slices which have this column only partially covered therefore
less than 2mn zeros are of this kind. In the remaining rows the number of zeros is bounded from
above by mn therefore P(M) < 4mn. O

2.4.2 Lower Bound for the Cube-Connected-Cycles Graph

To make proofs less technical consider only CCC), graphs with even number of dimensions. The
matrix of constraints M is constructed in the following way. Rows of M are labeled by all vertices

10



of the form (m =n/2 —2):

m m

part A ‘ @ part B m
hY

Parts A and B contain any binary string of length m, the head is represented by 1. Columns of M
are labeled by all left arcs emanating from the vertices of the form:

m m

@ part A’ @ part B’ @ @
-

ﬂ

Again parts A’ and B’ contain any binary string of length m. From the properties of the shortest
paths in CCC,, it follows that the vertex with parts A and B can be reached along the left arc from
the vertex with parts A’ and B’ iff the length of the longest run of consecutive zeros in B XOR B’
(denoted as LCZ(B XOR B')) is not shorter than LCZ(A XOR A’). Now we can state some
properties of the matrix of constraints M.

24m—2

Lemma 3 The matrixz of constraints M contains at least Z€T08.

Proof:
Let P, denote the number of binary strings of length m with LCZ equal to k. First we prove by
induction, that P, ; < gm—1

e The claim clearly holds when m =1 and also holds when m = k.

o Ifforalll<mandall 0 <3 <1I: P, < 21=1 then for k < m:

k k

k
Pm,k = Z mei,k + Z mekfl,i < Z 2m—7,—1 + 2m—k—1 = 2m—1
=1 =0 i=1

Following the definition the number of zeros in the matrix M is

1 m m 1 m m
2223 PriPg = 52" Y P | 3 P = P |
i=0 j

i=0 j=0 j= §=0
J#i

22m in: Pm,izm_l — 24m—2
=0

N —

|

We also need the following lemma:

Lemma 4 For any sets A, B of binary strings of length m, such that |A| - |B| > 22m—2lvm]
e there exist a € A,b € B such that LCZ(a XOR b) > |/m].
e there exist a € A,b € B such that LCZ(a XOR b) < |\/m].

Proof:
We prove the first part of the lemma by the way of contradiction. Assume that the conditions are
satisfied and for all a € A,b € B: LCZ(a XOR b) < |y/m]. Lets cut binary strings as follows:

Lvm] Lvm] rest=m—|v/m|?
——

part 1 ’ S ‘part |v/m] rest
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If we take any a € A,b € B then they must differ in all parts, otherwise LCZ(a XOR b) would
be at least |/m]. Let A;, B;;1 < i < [{/m] be the set containing all binary strings that are i-th
part of some string from A, B respectively. As A; N B; = () we have |A;] - |B;| < 22lvm]=2 4nq using
|A| - |B| < 2275t T | 4| - | B;| we obtain |A| - |B| < 22—2lv™] which is a contradiction.

The proof of the second part of the lemma is similar to that of first, but it uses the following
partitioning of binary strings (the bits with entry ¢ belong to the i-th partition):

L\/mj L\/mJ rest

12 | vl ERERE L\/mj\lw\...‘

a

Lemma 5 It is not possible to permute rows and columns of the matrixz of constraints M in such a
way that the resulting matriz contains square of zeros with side 22m~LVml+2,

Proof:

Assume by the way of contradiction, that such row and column permutations exist and let Q =
{(a;, b)|1 < i < 22m=WVmH+2L and W = {(¢,d;)|]1 < i < 22"~ LVmI+2) be the sets of labels of rows
and columns of the 0-square respectively (a;,b;,c; and d; are the binary strings in parts A,B,A" and
B’ respectively).

There are at least 2™~ Vml+1 g in (@ such that with each of them there are at least om—|vm|+1
tupples in @ (the same holds for ¢’s in W). Sets of such a’s and ¢’s satisfy the conditions of the
previous lemma and therefore there exist a and ¢ such that LCZ(a XOR ¢) < |\/m]|. There are at
least 2~ LVmI+1 g in Q such that they are in tupple with @& and the same holds for d’s in W with
respect to ¢. The sets of such b’s and d’s satisfy the conditions of the previous lemma and therefore
there exist b and d with LCZ(b XOR d) > |/m]. Thus there must be 1 in the entry coresponding
to labels (@,b) and (¢,d). As the inequality LCZ(a XOR ¢) < LCZ(b XOR d) is sharp, our result
holds also for shortest path routing schemes, which are not required to be full-information. O

Now we can state the main result of this subsection:

Theorem 7 For a full-information (k,d)-CON-MIRS of CCC,, graph the following bound holds on

k and d:
kd = Q(2V"/?)

Proof:

Applying lemma 2 on the previous result we obtain that the number of zeros which can be covered
using one cyclic interval per column maximized over all row permutations of the matrix M satisfies
P(M) < 2*m=LVmI+4 Using theorem 6 and the properties of the matrix M we have

24m—2 V/nj2—2|-6 /2

Now we can conclude that the DIS-MIRS model is asymptoticaly stronger than the CON-MIRS
model when considering memory requirements of the full-information shortest path routing schemes
of cube-connected-cycles.

12



2.4.3 Lower Bound for the Star Graph

Let (Pp, o) be the group of permutations of the set {1, ...,n} with the standard composition operation
(i.e. (mot)(z) =(m(z)) for all z). By ay, ..., a, we denote the permutation mapping i — a; for all
i. By (a1 a2 --- ap) we denote a cycle, i.e. a permutation that maps a; — a;y1 for all i (ap11 = a1)
and the remaining elements are mapped to themselves. A transposition is a permutation exchanging
exactly two elements.

The n-dimensional star graph (or S,,) has n! vertices and n!(n — 1)/2 edges. Vertices are all
elements of P,. Two vertices u,v are connected by an edge if they are mutually obtainable by
exchanging the first element with another one, i.e. if there exists a transposition (1 x) such that
u=vo(l z).

Lemma 6 In the n-dimensional star graph there exists a shortest path from u to v starting with the
arc corresponding to the transposition (1 x) if one of these conditions is satisfied:

e 1 and z are not in the same cycle of v='ou and (v ou)(zx) # x
o (v louw)(l)==x

Proof:

In [1] the following formula was derived for the distance of a vertex u and the identity permutation
Tid-

0 : wu(l)=1

2 w(l)#1

where ¢ is the number of cycles of u with the length at least two and m is the number of elements

contained in these cycles. If we move from the vertex u along the arc (u,uo (1 x)) then the distance
from m;; decreases in these two cases:

d(u, m;q) :c+m—{

e 1 and z are not in the same cycle of v and u(x) # =.
o u(l)=u=m.

1

The claim of the lemma is obtained using the fact that the mapping A,(u) = v~ ou is an automor-

phism of the graph S, satisfying A,(uo (1 z)) = Ay(u)o (1 z). O

There are six one-to-one mappings from a three element set to a three element set:

WI I I WBX TR
4 /

/ /

_‘;" yd

4 ¥

"
v
S AN
° ° o e o °

The composition of a mapping p : A — B and a mapping ¢ : B +— C is a mapping (p X q) : A~ C.
The composition has the following table:
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| 71 | o | 7 | ma | ms | 6 |

T || T1 | T2 | T3 | T4 | T5 | T6

T2 || T2 | T3 | 71 | T6 | T4 | T5

3 T3 | M1 | T2 | 5 | g | T4

T4 || T4 | T5 | g | 01 | T2 | T3

5 s | g | T4 | T3 | 711 | T2

T6 || T6 | T4 | T5 | T2 | T3 | T

Notice that the result of a composition aj X ... X ap, is from the set {my, 75, 76} iff the number of a;’s
from the set {my, 75,76} is odd.

For n = 0 (mod 3) and ax,...,a,/3 € {71,..., M6} let P(a,...,a,,3) denote the permutation having
following mappings:

ar:{1,2,3} = {4,5,6},a2: {4,5,6} — {7,8,9},...,a,/3 : {n — 2,n — 1,n} — {1,2,3}.

For example P(7y,me,m3) = 4,5,6,8,9,7,3,1,2.

For now consider n-dimensional star graph with n = 3 (mod 6),n > 9. We will choose the matrix
of constraints M with rows labeled by all vertices of the form P(a1,...,a, /3)_1 with even number of
a;’s from the set {m4, 75, 76} and with columns labeled by all arcs corresponding to the transposition
(1 2) emanating from all vertices of the form P(bi,...,b,/3) with odd number of b;’s from the set
{74, 75, 76}. The size of the matrix M is 6™/3/2 x 6™/3 /2.

Lemma 7 There is a zero in the field of the matriz of constraints M in the row with label v =
P(aq, ...,an/g)*l and the column with label u = P (b, ..., by /3) iff

al ng ><a3><b4>< ...Xan/g Xb1 X az X ... xan/3,1 an/3:ﬂ'6

Proof:
Due to the choice of the matrix M the result of the composition is from the set {my, 75, 7m6}. The
v~! o u has the following mappings between the sets of the form {3i + 1, 3i + 2, 3i + 3}:

n/3xb n/3—1Xbn
(1,2,3) W2 17,8 91 T 1y 5 6y e T 1 9 3y

If the result of the composition is w4 or w5 then the elements 1 and 2 are not in the same cycle of
v~! o u. Using the previous lemma and the fact that (v=! o u)(2) # 2 we obtain that there exists
a shortest path from wu to v starting with the edge corresponding to the transposition (1 2), thus
the entry in this field is 1. If the result of the composition is mg then the elements 1 and 2 are in
the same cycle of v~ o u. Using the previous lemma and the fact that (v=! o u)(1) # 2 we obtain
that there does not exist a shortest path from u to v starting with the edge corresponding to the

transposition (1 2), and thus the entry in this field is 0. O

Lemma 8 If A,B C {my,...,m}™ such that |A| - |B] > 9™ then there ezist ai,...,an, € A and
b1y .oy by € B such that a1 X by X ... X an X by # g

Proof:
In this proof w.l.o.g. assume that all mappings are from the set {1,2,3} to the set {1,2,3}.

Call a set A sharing if there exist two sequences in A which differ only in the first element. The
quotient Q(A,p — q) of a set A and a condition with p,q € {1,2,3} is a set obtained by taking
all sequences of A whose first element maps p to ¢ and by removing the first elements from these
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sequences. Taking a quotient of a set which is not sharing has a nice property that all sequences
obtained by removing the first element are different.

We will consider A C {7y, ...,m6}™ and B C {r1, ..., m6}" with m—n € {0,1}. Fora = aq,...,am, €
Aand b =by,...,b, € B defineaxb=aj xby X... x by(xXa,). We will prove the following claim: if A
is not sharing and |A|-|B| > 3™*"/2 or if A is sharing and |A|-|B| > 3™*" then for any z € {1,2,3}
there exist @, @ € A and b,5 € B such that (@ x b)(z) # (@’ x b )(x).

Looking at the table of the composition x we see that for m = n = 1 the claim holds. Assume

that the claim doesn’t hold and let m,n be the integers with the smallest sum m 4+ n for which there
exists a counterexample with some sets A, B and some element x. There are two posibilities:

e Foralla =ay,...,a; € A the a;(x) has the same value y.

In this case take A" = Q(A,z — y). For A not sharing it holds |A’| = |A|, otherwise |A’| >
|A]/2. Therefore it holds |B|- |A’| > 3""™~1 and the tripple B, A,y is a counterexample with
n+ (m — 1) < m+ n which is a contradiction.

e There exist @ = ay,...,a,, € A and a’ = d}, ..., al,, € A such that a1 (x) # d}(z).

In this case take A’ the largest of the sets Q(A,z — 1), Q(A,z — 2) and Q(A,z — 3) (the
element to which z is mapped in our choice will be denoted as y). For A not sharing it holds
|A’| > |A|/3, otherwise |A’| > |A]/6.

If there existed Cjé d and by, ..., by, such tha‘gg =cby,....,by, € B,V =d,by,...,b,, € B then
(@x b)(z) # (@xb)(z) or (@ x b)(x) # (@ x b')(x) which would be a contradiction. Therefore
the set B is not sharing.

It holds | B| - |A’| > 3"*™~1/2 and the tripple B, A’,y is a counterexample with n + (m — 1) <
m + n which is a contradiction.

In both cases we have obtained a contradiction, therefore the claim holds. Thus for |A| - |B| > 9™
the existence of @,@ € A and b,b € B for which @ x b(1) # @ x b (1) is ensured and from this the
claim of the lemma follows. O

Now we can state the main result of this subsection:

Theorem 8 For a full-information (k,d)-CON-MIRS of S,, graph the following bound holds on k
and d:
kd = Q(2"/3)

Proof:
The matrix of constraints M contains 62/3 /12 zeros, because for each column and every three rows
whose labels differ only in the first element there is exactly one zero in M.

From the previous lemma it follows that it is not possible to permute rows and columns of the
matrix M to obtain a matrix containing square 3™/3 x 373 which contains only zeros. Therefore
from lemma 2 we have P(M) < 2-18"/3. Using theorem 6 we obtain

b > /12

__on/3 _ n/3
—W_2//24_Q(2/)
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3 Congestion of Multi-Dimensional Interval Routing Schemes

In the previous section we have seen that representing all shortest paths for general graphs may
impose high memory requirements. However, if we consider interval routing schemes and there are
no restrictions on lengths of routing paths, one interval per edge suffices to route any graph [20]. It
is based on the fact that trees have 1-interval routing scheme. Of course this method cannot be used
in practice, as some links of the network will be highly congested. In this section we study a tradeoff
between memory requirements and congestion of routing schemes without considering lengths of
routing paths.

3.1 An Alternative MIRS of Cube-Connected-Cycles

In this section we construct a (2,n + 2)-DIS-MIRS of the cube-connected-cycles graph. It is simpler
and has smaller memory requirements than the full-information shortest path (2n3,n)-DIS-MIRS
from section 2. Its congestion is only (1 + O(lo%))F where F is the forwarding index of CCC,.

Lemma 9 Let u be the following vertex:

4

| |

and for arbitrary x let W, be the set of vertices of the form:

4

‘ logon — random binary string ‘

T

Then in any path from u to any w € W, there are at least n + min(x,n — x) — 6logy n left and right
arcs.

Proof:
Any string containing a run of 3logan consecutive zeros can be encoded as follows:

e A description of the Turing machine used for decoding in O(1) bits.
e The position where the run starts in logy n + 2log, logy n bits in self-delimiting form.
e The rest of the string in n — 3log, n bits

Clearly such string is not log, n-random for sufficiently large n and thus w’s tape does not contain
a run of 3log, n consecutive zeros.

Assume by the way of contradiction that there exists a path from u to w with less than n +
min(x,n —x) —6logy n left and right arcs. Every cell containing 1 in w must become pointed by the
head on this path. Let y be the position of the cell containing 1 which became pointed last. W.l.o.g
assume that it became pointed after a movement of the head to the right.

e If y > 3logy n+ 1 then it became pointed after at least 2(y —3logan)+n—y =n+y—6logyn
head movements (otherwise there will be a run of 3logy n zeros in w). To get to w we have to
move the head to the position x which requires min(z — y,n — x + y) movements. In total at
least n + y — 6logy n + min(z — y,n — x + y) movements are needed, a contradiction with our
assumption about the length of the path.
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e If y < 3logyn + 1 then it became pointed after at least n — y head movements. To move the
head to the position z at least min(z —y,n — z + y) movements are required. In total at least
n—y+min(x—y,n—x+y) movements are needed, a contradiction with our assumption about
the length of the path.

Therefore the claim of the lemma holds. O

Lemma 10 The forwarding index of CCC,, is at least 32"n?(1 — O(leny),

n

Proof:

Take v and W, from the previous lemma. Let W = [JW,. By h(v,w) denote the minimal number
of left and right arcs on a path from v to w minimized over all such paths. A fraction of at least
(1 — 1/n) binary strings is logan-random, therefore

Z h(u,v) > (1 —1/n)2" i(n+min(m,n —1x) —6logyn) = Zanz (1 0 <1ogn)>

veW =1 n

The CCC,, graph is vertex-symmetric, therefore for the minimum number of left and right arcs which
are contained in any set of paths connecting every ordered pair of vertices it holds:

Z Z h(v,w) > 2"n Z h(u,w) > 2”?122”712 (1 _0 <logn>>

VeV weV wew n

This load must be divided between 2"n edges (each comprising one left and one right arc) and thus
the claim of the lemma holds. O

Theorem 9 There exists a multipath (2,n + 2)-DIS-MIRS of n-dimensional cube-connected-cycles
with congestion (1 + O(k’%))F The length of labels is 2n +logs n + O(1) bits and memory required
per vertex is O(n) bits.

Proof:

In the i-th dimension (i € {1, ...,n}) each vertex has the same label as the content of the i-th cell of
its tape. The label in the n + 1-st dimension is the position of the head and the label in the n + 2-nd
dimension is the number written on the tape.

Suppose in a vertex u there is a message destinated to a vertex v

e If v and v differ in the cell pointed by u’s head then the message is sent along the shuffle arc.

e If v and v have the same contents of the tape then the message is sent along left or right arc.
If v’s head is at most n/2 movements to the left from w’s head then the left arc is chosen,
otherwise the right arc is used.

e In all other cases the message is sent along the right arc.

Therefore on a shuffle arc there is one tupple selecting vertices having given digit in certain cell, on
a left (right) arc there is one tupple selecting vertices having given contents of the tape and having
head in a interval of certain n/2 positions, and finally there is one more tupple on a right arc selecting
vertices not having given contents of the tape and not having given digit in certain cell.

By hgr(u,v) denote the number of left and right arcs on a path from w to v in this routing. It
holds hr(u,v) < n+ min(x,n — x) if v’s head is x cells to the left from u’s head. Therefore

n—1
S hp(v,w) £2'2" > n+min(z,n — x) = 2°"n(n* + [n/2][n/2]) < ZnSQZ"
veV weV =0
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The routing scheme is symmetric, i.e. all left arcs are equally loaded and also all right arcs are
equally loaded. Therefore the number of paths passing along any edge comprising left and right arc
is at most gQ”nZ.

For any x € {1,...,n} there are 2" n vertices having zero (one) in the z-th cell. Therefore
2(2"1n)? paths contain a shuffle arc corresponding to changing the z-th bit. The routing scheme is
symmetric, thus the number of paths passing along any edge comprising two shuffle arcs is 2"n?. It
follows that the congestion of the proposed routing scheme is at most 52"n? = F(1 + O(k’%)) O

3.2 An Upper Bound on Tradeoff between Congestion and Space Complexity of
Routing Schemes

We show that for general graphs there is an upper bound on the tradeoff between the congestion and
the space complexity of routing schemes. The main result is that for any connected graph G and
given 1 < s < |V there exists a multipath (2 + [|V|/2s],1)-MIRS with congestion F' + |[V|- A - s,
where F' is the forwarding index of graph G and A is the maximum degree of vertices of graph G.
The proof is based on suitable clustering of the graph:

Lemma 11 For any connected graph G = (V, E) of maximum degree bounded by A and any integer
1 < s < |V| there exists decomposition of V into disjoint sets Vi,...,Vy, such that:

e s<|Vi|<A-(s—1)+1, forie{l,..,m}
e Subgraph of G induced by V; is connected fori € {1,...,m}

Proof:
As every connected graph has spanning tree, it suffices to prove the lema for trees. Let s be fixed.

e For trees of size s < |V| < A-(s—1)+1 the lemma holds.

o If the size of the tree T is greater than A - (s — 1) + 1, consider the edge e = (u,v) such that
the size of smaller component of T — e = T3, U T}, is maximal. W.l.o.g assume |T,,| < |T},|. Due
to the choice of e, after removing any of the edges emanating from v we obtain a component of
size < |T,|. As it cannot be the component to which the v belongs, we have |T| < A -|T,| +1
and therefore s < |T),|. So we can remove edge e and decompose trees T,, and T, recursively,
which finishes the proof.

a

Theorem 10 Let G be any connected graph of mazimum degree bounded by A with forwarding index
F. For any s such that 1 < s < |V| there exists (2+ [|V'|/2s], 1)-MIRS with congestion F+|V|-A-s.

Proof:
First decompose the graph G into clusters according to lemma 11. Now we describe, how messages
destinated to vertices in one cluster C; are routed:

e Routing strategy from outside the cluster:
Let S be the system of routing paths achieving forwarding index F. Take the subset of S
containing paths destinated to vertices in C; and cut these paths immediately after they reach
some vertex in C; (further distribution of messages inside the cluster is be done using different
strategy). Denote this set of paths S’.

If we take the union of the paths in &’ we obtain a directed graph which may contain cycles.
However the Figure 1 shows how to remove cycles. If there is a cycle, we can change the paths
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so that their total length decreases, while we don’t increase the congestion and we do not loose
any paths.

Figure 1

More formally, if there is a cycle @ in the union of paths in &', take the smallest set of paths
Py, ..., P, which form this cycle. As this is the smallest set, it must hold, that between first
vertex (say f;) of P; in @ and the last vertex (say [;) of P; in @) there must be exactly one
first and one last vertex belonging to other paths. W.l.o.g we can assume, that these are [;_1
and f;+1. Now we can change paths P; = PiLfi...liPZ-R to P, = PiLfi...li,lPﬁl, decreasing total
length, not increasing congestion and not loosing any paths.

We can apply this procedure until all cycles are removed from the union of paths in S’ (as the
total length of paths decreases in each step, we must finish after finite number of steps). In
final MIRS the labels of vertices in C; will form some interval I;, therefore we can label each
arc in the union by this interval. We do not introduce a cycle in final MIRS, and we have
guaranteed existence of system of routing paths from outside the cluster to the cluster having
small congestion.

e Routing strategy inside the cluster:
As there exists 1-IRS of any tree, we will route messages inside the cluster along its spanning
tree using two intervals (instead of one cyclic interval we must use two acyclic ones). The
congestion of this local routing is bounded by |V|- A - s, because there are less than A - s
vertices in the cluster.

The resulting scheme will have congestion bounded by F' + |V|- A - s as each edge is in at most one
cluster, where it is loaded by at most |V|- A - s local paths and the global paths do not load any
edge by more than F' paths. The number of used intervals is at most 2 + [|V|/2s]. (It may seem
that 1+ [|V]/s] intervals are required, but neighbouring intervals can be merged.) O

This theorem has interesting consequences, for example for planar graphs of maximum degee
bounded by constant:

Corollary 1 For any planar graph G with degree bounded by constant and with forwarding index F,
there exists a (O(\/|V]),1)-MIRS with congestion O(F).

As every planar graph with degree bounded by constant has O(+/|V'|)-edge separator [3], its forward-
ing index is Q(|V[*/?). Choosing s = \/|[V] in Theorem 9 gives us such MIRS.

3.3 An Upper Bound on Tradeoff for Deterministic Routing Schemes

The result of the previous subsection was based on the fact that the considered routing schemes were
multipath. Naturally a question arises whether similar result is possible for deterministic routing
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schemes too. In this section we positively answer this question using the probabilistic method. We
use the following lemma from [19]:

Lemma 12 (Chernoff-Hoeffding Bound) Let Xi,..., X, be independent random variables as-
suming values in the interval (0, m). Then for the random variable X = > | X; and any o > 1 it
holds:

E[z]

PIX > aE[X]] < (ea_1>m

aOé

Theorem 11 Let G be any connected graph of maximum degree A with forwarding index F. For
any s such that 1 < s < |V| there exists 2+ [|V|/2s]|-IRS with congestion a- F + |V|- A - s where «

1s such that -
ea—1\ VA= 1
< P
a“ 2|E|
Proof:

It suffices to slightly modify the routing scheme obtained in the proof of theorem 10. For any cluster
C; only the routing strategy from outside the cluster was nondeterministic. Let v be any vertex
outside C; with outgoing arcs ey, ..., ;. For each arc e; let [; denote the load of this arc by paths to
C;. In the deterministic scheme only one arc will be used to route messages from v to C;. We choose
this arc randomly, arc e; is chosen with probability [;/ Sk

After performing this choice for every vertex outside C; we obtain a probability space over correct
deterministic routing schemes from outside C; to C; with expected load on any arc equal to the load
in the original nondeterministic scheme (with the system of routing paths described in the proof of
theorem 10). Maximum load on any arc is bounded by |V|- A - s.

We construct a probability space for each cluster and then we combine all these spaces together.
In the resulting probability space the load of any arc e is a random variable which is a sum of
random variables with maximum value |V|- A - s. Its expected value is at most F' and therefore the

F
ec—1\ TV[-As

probability that the load on this arc exceeds «- F' is bounded by ( a—a)

then 1/2|E| then the probability that load on no arc exceeds « - F' is non-zero and therefore there
exists deterministic routing scheme with congestion at most |V|- A -s+ « - F using 2 + [|V]/2s]
intervals (2 + [|V|/2s]-IRS). O

. If this value is smaller

Similarly as in previous subsection, this theorem has interesting consequences for planar graphs
of maximum degree bounded by constant:

Corollary 2 For any planar graph G with degree bounded by constant and with forwarding index F
there exists a O(\/|V|log |V|)-IRS with congestion O(F).

4 Conclusion

We compared two basic models of the multi-dimensional interval routing introduced in [4]. The
main result is that the DIS-MIRS is strictly stronger than the CON-MIRS when considering memory
requirements of the full-information shortest path routing on certain well known interconnection net-
works. Moreover we showed that for butterfly and cube-connected-cycles there exist full-information
shortest path DIS-MIRSs having small memory requirements. It would be interesting to know,
whether there exist space efficient full-information shortest path DIS-MIRSs for certain classes of
graphs, i.e. vertex symmetric graphs, planar graphs etc.
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We also considered the problem of congestion. We showed that there are schemes which are not
shortest path but efficiently utilize the network and have smaller memory requirements. We have
shown an upper bound on the tradeoff between memory requirements and congestion of multipath
routing schemes for general graphs. A lower bound on the memory requirements of the multipath
routing with given congestion would be of interest.
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