Simultaneous Diophantine
Approximation with Excluded Primes

Laszlo Babai
Daniel Stefankovié



Dirichlet (1842)

Simultaneous Diophantine Approximation

Givenreals «,,0,,...,0,

Hintegers .., and (

such that 4 <0 and
\aiq — I‘i‘ <QY" forall |

‘aiQ — pi\ <1/2 trivial



Simultaneous Diophantine Approximation
with an excluded prime

Givenreals ,,(Q,,...,0, prime D

3? integers [,...,I’ and (
such that gcd(p,q) =1 and

\qai —ri‘Sg for all |



Simultaneous diophantine & -approximation
excluding P

Not always possible
Example p =3

If

a, =1/3

then
&2[0oy — 1 Hq/3-1 21/3



Simultaneous diophantine & -approximation
excluding P

obstacle with 2 variables

If
a,+2a, =1/p
then ¢ >|qa, — 1, |
gz‘qaz_rz‘

3 2|q(, +2a,) — (1, +2r,) 21/ p



Simultaneous diophantine & -approximation
excluding P

general obstacle

If
b, +b,c, +...+ b =1/ p+t

then

(e‘Z:lbi 1>1/p



Simultaneous diophantine & -approximation
excluding P

Theorem:

If there is no &-approximation
excluding P then there exists an

obstacle with

3 lb |<n*? /e

Kronecker’s theorem ( ):

Arbitrarily good approximation excluding P
possible IFF no obstacle.



Simultaneous diophantine & -approximation
excluding P

obstacle with
b |<n*? /e

necessary to prevent £-approximation
excluding P

sufficient to prevent %—approximation

Ph excluding P



Motivating example

Shrinking by stretching



Motivating example fi’i:\
\
set AcC (Z/ mZ) \

A\
\
\
arc length of A j}}
max | a(mod m) | Vi
acA /s
.
stretching by X gcd(x,m) =1

a— axmodm
Ax ={ax|a € A}



Example of the motivating example

A = 11-th roots of unity mod 11177




Example of the motivating example

A = 11-th roots of unity mod 11177
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Shrinking modulo a prime

If M1 a prime
then

every small set can be shrunk



Shrinking modulo a prime
M a prime

d =| Al

there exists X such that

arc-length of AX <m

proof:

ﬁ,...,a—d _—~X=0

m._ Tl\ Dirichlet ‘qai—p.‘ﬁ }/n
Q:=m 3q;0<q£Q Q




Shrinking modulo any number

m a/pri(e — . every small set can
be shrunk

?



Shrinking modulo any number

m a/priﬁe% eWn
bes

m = 2 A={11+2"}
If
gcd(x,m) =1
then the arc-length of AX
> 2k—2



Where does the proof break?

m = 2

proof:

ﬁ,...,a—d _—~X=0

m._ Tl\ Dirichlet ‘qai_pi‘g }/n
Q:=m 3q;0<q£Q Q




Where does the proof break?

m = 2
need:
approximation excluding 2
proof:
d, d,

A _~ X.=(

m M | Dirichlet 1

Q:=m-1 _ Hq;@ ‘qai_ pi‘SQlln




Shrinking cyclotomic classes

m a/priﬁe% eWn
be s

set of interest - cyclotomic class
(i.e. the set of r-th roots of unity mod m)

elocally testable codes

ediameter of Cayley graphs
Warring problem mod p*
sintersection conditions modulo p¥



Shrinking cyclotomic classes

cyclotomic class

can be shrunk



Shrinking cyclotomic classes

cyclotomic class

can be shrunk

Show that there is no small obstacle!



Theorem:

If there is no &-approximation
excluding P then there exists an

obstacle with

3 lb |<n*? /e




Lattice
V,,...,vV. € R"

linearly independent



V.2 +...+V Z

V,,...,vV. € R"

Lattice



Lattice

V,,...,vV. € R"

V.2 +...+V Z

Dual Iattice

L' ={ul|(VvelL)V'ueZ}



Banasczyk’s technique (1992)

gaussian weight of a set

o(A) = Z:e—ﬂIIXII2

XeA

mass displacement function of lattice

¢ (x) = p(L+x)/ p(L)




ique (1992)

mass displacement function of lattice

Banasczyk’s techn

1eS

propert

dist(x,L)>vn = ¢ (x)<1/4



Banasczyk’s technique (1992)

discrete measure

o (A)=p(LNA)/ p(L)

relationship between the discrete measure and
the mass displacement function of the dual

oL(X) = p(L) éexp( 7|y |P)exp(27iy” x)




Banasczyk’s technique (1992)

discrete measure defined by the lattice

o (A)=p(LNA)/ p(L)

1 1

x x
p(L) IX||<s p(L) IX||>S

\/’

oL(X) = (L) Zexp( 7|y |P)exp(27iy” x)




Banasczyk’s technique (1992)

1 0

a0y, A, : 8 (1)

0 0

0
0
1
0

V)

there is no short vector W € L

with coefficient of the
last column # 0(mod p)



Banasczyk’s technique (1992)

there is no short vector W € L
with coefficient of the

last column # 0(mod p)
5 % / U= ¢ e
GL(u)il 2 ol pV\/ﬁ n+1
P (u)>1/2

dist(u, L ) < \/_

obstacle
QED



Lovasz (1982)

Simultaneous Diophantine Approximation

Given rationals &, 0,,..., (!,

can find in polynomial time

integers P;,..., P, 0<q<Q
\qai — pi‘ < 2:/2” for all |
Q

Factoring polynomials with rational coefficients.



Simultaneous diophantine & -approximation
excluding P - algorithmic

Given rationals ,,,,...,_ ,prime [
can find in polynomial time

2C_ . P& -approximation excluding [

where ¢ is smallest such that there
exists c-approximation excluding P

C, =4/n2""






Exluding prime and bounding denominator

If there is no &-approximation
excluding p with <0
then there exists an

approximate obstacle with

3lb |<n*? /e

bo, +b,a, +...+ b, =1/ p+t+ Kk
|l x<n/Q



Exluding prime and bounding denominator

the obstacle

necessary to prevent c-approximation
excluding p with <0

sufficient to prevent

£1(2n*?p) -approximation
excluding p with  <Q/(2pn)



Exluding several primes

If there is no &-approximation
excluding p,,..., P,

then there exists

obstacle with

> |b [<n*(max(n,k))/ e

Zn:biai = Z 1/p; +t
1=1

jeAc[k]



Show that there is no small obstacle!

k %
m=7
m

primitive 3-rd root of unity

know
1+ w+ o =0 (mod 7%)

obstacle
C, +Co=t7"", ged(t,7)=1



Show that there is no small obstacle!

1+ w+ o =0 (mod 7%)
c, +Cco=t7"", ged(t,7)=1

Res(1+ X + X*, ¢, + C,X)

1 1 1]
ot ol 0

io 0 o0 2
= = = k-1
% divisible by 7 2 2

< 2(ct +¢f)
There is g with all
4 3-rd roots

= 2z [—(4\/7)m1’2, (4ﬁ)m1’2]

E




Dual Iattice

(1 0
0 1
0 0
4 %

0 0"
0 0
1 0
a, 1
v vy

glx/ﬁ



Algebraic integers?

possible that a small integer
combination with small coefficients
is doubly exponentially close to 1/p
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