Counting Euler tours?

Qi Ge Daniel Štefankovič

University of Rochester

Euler tour

every edge exactly once
end where started

Euler tour

every edge exactly once
end where started

FIGURE 98. Geographic Map: The Königsberg Bridges.

not an Euler tour

Basic facts

There exists one if and only if all vertices have even degree (Eulerian graph)

an Euler tour in an Eulerian graph can be found in linear time.

Can we find a random one? Can we count their number? (efficiently)

Can we count their number?

polynomial time algorithm Can we count their number? undirected graphs #P-complete (Brightwell-Winkler'05)

directed graphs polynomial-time algorithm known (using spanning trees)

Can we count their number? approximately

polynomial time algorithm

→ 264±10%

(open question, listed, e.g., in Approximation algorithms (V.Vazirani))

self-reducible ⇒ approximate counting ⇔ approximate sampling (Jerrum, Valiant, V.Vazirani'86)

(exactly 2 of these are valid)

Can we find a random one? Markov chain $X_1, X_2, X_3, \dots, X_t, \dots$ $V \in \mathcal{V}$ is the mixing time polynomial?

Can we find a random one?

4-regular graphs

Markov chain

pick a random vertex v locally change the tour at v L₁ distance to uniform distribution

$$\sum_{a} |P(X_t=a) - \frac{1}{M}|$$

mixing time = t to get L_1 distance $\leq \epsilon/2$

(exactly 2 of these are valid)

(exactly 2 of these are valid)

vertices with "rotations"

map

vertices with "rotations" and a graph

Can we (approximately) count their number?

for planar maps yes (Kotzig'68)

for general maps?

Our results: A-trails in 4-reg enough

approximate sampling/counting of A-trails in 4-regular maps

approximate sampling/counting of Euler tours in Eulerian graphs

(AP-reduction (Goldberg, Dyer, Greenhill, Jerrum'04))

A-trails in 4-reg enough

approximate sampling/counting of A-trails in 4-regular maps

approximate sampling/counting of Euler tours in 4-regular graphs

approximate sampling/counting of A-trails in 4-regular maps

approximate sampling/counting of Euler tours in 4-regular graphs

A-trails in 4-reg enough

approximate sampling/counting of A-trails in 4-regular maps

approximate sampling/counting of Euler tours in Eulerian graphs

123456 <u>213465</u> 231465 324165 342615

A-trails in 4-reg enough

approximate sampling/counting of A-trails in 4-regular maps

approximate sampling/counting of Euler tours in Eulerian graphs

even-odd sweeping MC

Theorem (Wilson'04): in O(d³ ln²d ln(1/ ϵ)) steps get ϵ /2 L₁ distance from uniform on permutations.

Exact: A-trails in 4-reg enough

exact counting of A-trails in 4-regular maps

exact counting of Euler tours in Eulerian graphs

(corollary: counting A-trails in 4-regular graphs #P-complete)

Exact: A-trails in 4-reg enough

(a)

(b)

Exact: A-trails in 4-reg enough

Our results: A-trails in 4-reg enough

approximate sampling/counting of A-trails in 4-regular maps

approximate sampling/counting of Euler tours in Eulerian graphs

(AP-reduction (Goldberg, Dyer, Greenhill, Jerrum'04))

Questions:

AP reduction from Euler tours in Eulerian graps to Euler tours in 4-regular graphs?

Approximate sampling/counting of Euler tours/A-trails?

Which subsets of the hypercube can be sampled from?

