Removing Independently Even Crossings

Michael Pelsmajer IIT Chicago Marcus Schaefer DePaul University Daniel Štefankovič University of Rochester

Crossing number

cr(G) = minimum number of crossings in a drawing* of G

*(general position drawings, i.e., no intersections with3 edges, edges don't cross vertices, edges do not touch)

Crossing number

poorly understood, for example:

don't know cr(K_n), cr(K_{m,n})

Guy's conjecture:

$$\operatorname{cr}(\mathsf{K}_{\mathsf{n}}) = \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor$$

Zarankiewicz's conjecture:

$$\mathsf{cr}(\mathsf{K}_{\mathsf{m},\mathsf{n}}) = \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{m}{2} \right\rfloor \left\lfloor \frac{m-1}{2} \right\rfloor.$$

no approximation algorithm

Pair crossing number

pcr(G) = minimum number of pairs of edges that cross in a drawing* of G

*(general position drawings, i.e., no intersections with 3 edges, edges don't cross vertices, edges do not touch)

Odd crossing number

ocr(G) = minimum number of pairs of edges that cross oddly in a drawing* of G

oddly = odd number of times

 $ocr(K_5)=1$

*(general position drawings, i.e., no intersections with 3 edges, edges don't cross vertices, edges do not touch)

Rectilinear crossing number

rcr(G) = minimum number of crossings in a planar straight-line drawing of G

 $rcr(K_5) = 1$

"Independent" crossing numbers

only non-adjacent edges contribute

iocr(G)=minimum number of pairs of non-adjacent edges that cross oddly in a drawing of G

ocr(G) = minimum number of pairs of edges that cross oddly in a drawing of G

"Independent" crossing numbers

only non-adjacent edges contribute

iocr(G)=minimum number of pairs of non-adjacent edges that cross oddly in a drawing of G

What should be the ordering of edges around v?

"independent" \Rightarrow does not matter!

columns = pair of non-adjacent edges, e.g., for K_5 , 15 columns rows = non-adjacent (vertex, edge), e.g., for K_5 , 30 rows

Crossing numbers iocr(G) $\sqrt[V]{} \leq acr(G)$ ocr(G) $\sqrt[V]{} cr(G) \leq rcr(G)$

Crossing numbers – amazing fact

$iocr(G)=0 \Rightarrow rcr(G)=0$

 $iocr(G)=0 \Rightarrow cr(G)=0$ (Hanani'34,Tutte'70) $cr(G)=0 \Rightarrow rcr(G)=0$ (Steinitz, Rademacher'34; Wagner '36; Fary'48; Stein'51)

Crossing numbers – amazing fact

$$\begin{array}{ccc} \text{iocr(G)} & \text{acr(G)} \\ & \swarrow & \swarrow \\ \text{ocr(G)} & \swarrow & \text{cr(G)} \leq \text{rcr(G)} \\ & \swarrow & \text{pcr(G)} \end{array} \end{array}$$

$iocr(G) \le 2 \Rightarrow rcr(G)=iocr(G)$

 $\begin{array}{ll} iocr(G) \leq 2 \Rightarrow cr(G) = iocr(G) & (\text{present paper}) \\ cr(G) \leq 3 & \Rightarrow rcr(G) = cr(G) & (\text{Bienstock, Dean'93}) \end{array}$

Crossing numbers - separation

our result $cr(G) \leq {2iocr(G) \choose 2}$ e is <mark>bad</mark> if ∃f such that

- e,f independent
- e,f cross oddly

drawing D realizing iocr(G)

GOAL: drawing D' such that

- good edges are intersection free
- pair of bad edges intersects ≤ 1 times

GOAL: drawing D' such that

- good edges are intersection free
- pair of bad edges intersects ≤ 1 times

good → even, locally

cycle of good edges \rightarrow cycle of even edges \rightarrow intersection free cycle

good → even, locally

cycle of good edges \rightarrow cycle of even edges \rightarrow intersection free cycle

good \rightarrow even, locally

cycle of good edges \rightarrow cycle of even edges \rightarrow intersection free cycle

good \rightarrow even, locally

cycle of good edges \rightarrow cycle of even edges \rightarrow intersection free cycle \rightarrow degree \leq 3 vertices

 $good \rightarrow even$, locally

cycle of good edges \rightarrow cycle of even edges \rightarrow intersection free cycle \rightarrow degree \leq 3 vertices

good → even, locally

cycle of good edges \rightarrow cycle of even edges \rightarrow intersection free cycle \rightarrow degree \leq 3 vertices

repeat, repeat, repeat

potentials decreasing:

 $\phi = \sum d_v^3$

#good cycles with intersections

 $DONE \Rightarrow good \ edges \ in \ cycles$ are intersection free

DONE \Rightarrow good edges in cycles are intersection free

look at the blue faces

add violet good edges, no new faces

add bad edges in their faces ...

Open problems

Is iocr(G)=ocr(G) ?

(genus g strong Hannani-Tutte) Does $iocr_g(G)=0 \Rightarrow cr_g(G)=0$?

Is cr(G)=O(iocr(G)) ?