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We give a deterministic, polynomial-time algorithm for approximately counting the number of {0, 1}-solutions fo
any instancc of the knapsack problem. On an instance of length n with total weight W and accuracy paramcter
eps, our algorithm produces a (1 + eps)-multiplicative approximation in time poly(n.log W.1/eps). We also give
algorithms with identical guarantees for general integer knapsack, the multidimensional knapsack problem
(with a constant number of constraints) and for contingency tables (with a constant number of rows).
Previously, only randomized approximation schemes were known for these problems due to work by Morris
and Sinclair and work by Dyer.

Our algorithms work by constructing small-width, read-once branching programs for approximating the
underlying solution space under a carefully chosen distribution. As a byproduct of this approach. we obtain
new query algorithms for learning funciions of k halfspaces with respect o the uniform distribution on {0.1}"n.
The running time of our algorithm is polynomial in the accuracy parameter eps. Previously even for the case
of k=2, only algorithms with an exponential dependence on eps were known.
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A Deterministic Polynomial-time Approximation Scheme for
Counting Knapsack Solutions

Daniel Stefankovic, Santosh Vempala, Eric Vigoda
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Given n elements with nonnegafive integer weights w1,.... wn and an integer capacity C, we consider the
counting version of he classic knapsack problem. find the number of dislincl subsels whose weighls add up o al
most the given capacity We give a deterministic algorithm that estimates the number of solutions to within
relative error 1+-eps in time polynomial in n and 1/eps (fully polynomial approximation scheme). More precisely,
our algorithm takes time O(n"3 (1/eps) log (n/eps)). Qur algorithm is based on dynamic programming. Previously,
randomized polynomial time approximation schemes were known first by Morris and Sinclair via Markov chain
Monte Carlo techniques, and subsequently by Dyer via dynamic programming and rejection sampling.
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What can be counted?

(in polynomial-time)

exactly? very little...

number of spanning trees (using determinant),
Kirchoff’1847.

perfect matchings in planar graphs
(using Pfaffians), Kasteleyn’1960.

(rest: usually #P-hard)



What can be counted?

(in polynomial-time)

approximately? a little more...

perfect matchings in bipartite graphs (permanent of
non-negative matrices), Jerrum, Sinclair, Vigoda’2001.

Ferromagnetic Ising model, Jerrum, Sinclair’1989.
Independent sets (A <5), Weitz’2004.

k-colorings (k > (11/6)A), Vigoda’1999.

(approximate counting ~ random sampling,
Jerrum, Valiant, Vazirani’1986)



Approximate counting

(in polynomial-time)

deterministic: ouT

| A T < l+¢
INIZUTA . OUT
randomized:
INPUT . OUT

e

P(l— < (M< 1 g)>1 -0



deterministic: OUT

_C-_‘*

INPUT \H o

not too many examples: independent sets in degree
<6 graphs (Weitz’2004), matchings in bounded degree
graphs (Bayati, Gamarnik, Katz, Nair, Tetali’2007),
satisfying assignments of DNF formulas with terms of
size < C (Ajtai, Wigderson’1985)

< 1+

randomized:
INPUT

e

— OUT
- P(l—s EO(SJTE 1+3)Z1 —8

more examples; Monte Carlo, usually
using a Markov chain (dependence 1/¢?)




deterministic.:

INPUT _
G

|— <

- OUT

_OUT

< l4+¢

randomized:

INPUT _

e

— OUT

P(l—a < OgTil 1+8)2 1 -6

1) is randomness necessary ?

Is P = BPP ?

Primes € P (Agarwal, Kayal, Saxena 2001)

2) dependence onc ?

Monte Carlo — ©(1/¢?)



Knapsack (optimization)

INPUT: "%
(W1’V1)a°°°(wmvn)’ L (integers)
~N

values

OUTPUT:




Dynamic program #1 |Nisis e
(L is smal |) (WY .).t---(\\‘fvn:yn), L (integers
. OUTPUT: s
T[' ’ M] Sc [n] max igsvi
(optimal solution with igswiaL

items 1,...,i and limit M)

T[i-1,M]
T[-1,M-w;] + v,

T[I,M] = max{




Dynamic program #2 |kttt

INPUT: "™

(v;’s are small) (W0, (W), L (tegers

. OUTPUT: values
T[' ,V] Sc [n] max Z v,
ieS

(smallest weight of 2wt
a subset of 1,...,i, ‘
with value > V)

T[i-1,V]
T[i-1,V-v.] + w.

T[i,V] = min{

mmm) approximation algorithm




Counting knapsack

INPUT:
Wi,...,W,, L

OUTPUT:

How many Sc [n]

are there?

#P-hard




Counting knapsack

Dyer, Frieze, Kannan, Kapoor, Perkovic,
Vazirani’1993 exp(0*(n172)) / 2
randomized approximation algorithm

Morris, Sinclair’ 1999 O( nc/ ¢2)
randomized approximation algorithm
(MCMC, canonical paths)

Dyer’2003 O(n25 + n2/c2)
randomized approximation algorithm
(dynamic programming)

OURS: O*(n3/s)




DYer’ 2003, Counting knapsack

Wi,...,W,, L

T[',M] QUTPUT: How many Sc [n]

with
(number of solutions D owsl
Wlth itemS 1 ,...,i and are there? =S
limit M) #P-hard

T[,M] =T[i-1,M] + T[i-1,M-w]

+ rejection sampling Bl approximate counter




Counting knapsack

+ rejection sampling [REZAUCC ",

Wy,... W, L

) THMl  omon oy o

. with
(number of solutions sl

approximate counter i wibehas

.. are there?
Ilmlt M) #P-hard

o MW T[i,M] = T[i-1,M] + T[i-1,M
w,’ = 1 [,M] = T[i-1,M] + T[i-1,M-w}]

rounding:

+ rejection sampling [ > approximate counter

Wi” — L Wi, J
1) get more solutions, Q”’ o )’
2) not too many more, |Q”’|< (n+1)|Q’|

Proof:
S’e V7 -, Xheaviestin S, then §” - {X}c(’




Our dynamic program

deterministic approximation algorithm

. _ smallest M such that knapsack
t(i,A) = with w,,...,w;,M has > A solutions

7(i,A) = min max
oc[0,1]

{r(i-‘l oo A)
t(i-1,(1-00) A)+w,




Our dynamic program

Q=1+¢/(n+1)
s=[ nlogg 2|

deterministic approximation algorithm

. __smallest M such that knapsack
T(I,A) = with w;,...,w,M has > A solutions

T[0..n,0..s] {T(i-1,c{ A)

T(I,A) = min max
aclo t(i-1,(1-0) A)+w,

T(i-1,j+Ing o)

(1,))=min max{

ac0,1]  *T(i-1,Lj+Ing(1-00) ) +w,

Lemma 1: 1(i,Q1") < T[i,j] < (i, Q)




(1,))=min ma
oc[0,1]

{T(i-1 Lj+Ing o)
T(i-1, j+Ing(1-0) ) +w;

Lemma 2: can compute recursion efficiently

only few values of o matter
Qy,....,Q% 1-Q°, ...., 1-Q!

can use binary search

TOTAL RUN TIME = 0(%3




How to deal with

Computer Science > Data Structures and Algorithms

Polynomial-Time Approximation Schemes for Knapsack and

more constraints 7 Eheiisits

(e'g°, Contingency tab|eS, e
multi-dimensional knapsack, ...

Data Structures and Algorithms (cs.05): C
871 [cs.DS)

Submission history

multi-dimensional knapsack:

How many Sc [n]
with

w;; <L

. j
1S
are there?

O( (n/c)°* log W) algorithm




Read once branching programs

(S,n)-ROBP  Layered directed
graph
. > . S vertices per la
{n.1} P yer
f\‘ ° * Edges between
: : - : ° consecutive layers
5 n layers .+ Edgeslabeled{0,1}
? o Input: (i1, ..., 25)
e Output: Label of final
* * ° vertex reached

Counting the number of accepting paths ?
dynamic programming, time = O(nS)



ROBP for knapsack

thireshold b
&

n layers

() a1x1| |\ayry + agics Zf gl

Problem: width too large
Solution: reduce width by approximating



Monotone ROBPs

accepting paths from u

/

monotone: u<v < A(u) cA(v)

g1
given implicitly

e ordering: given u,v,isu<v? .y

* midpoint: given u,v, get w s.t.
[{x;u<x<w}| = {x;w<x<v}| + 1

 transitions: given u, get the
outneighbors of u



group the vertices in the ROBP forknapsack

layers according to the 1 WL
rough number of accepting <= i\
paths processing right-left ?’

Ly -

0 a1T1| |layry + asTo T
o

Problem: width too large
¢ Solution: reduce width by approximating

°
Monotone ROBPs
,accepting paths from u
/
° monotone: u<v < A(u) c A(v)
0 N ' N .u
given implicitly
° - ordering: givenu,v,isu<v ? o
I « midpoint: given u,v, getw s.t. _
already [ usxsw}| = | w<sx<v}| £ 1

“Shl’unk” « transitions: given u, get the outneighbors of u



ROBP for knapsack

More constraints?

[ threshold Q
can be generalized to distribution y ¢ | \7
given by small space sources.\ 0 FE e[S

Problem: width too large
Solution: reduce width by approximating

small space sources =
ROBP + probability distributions on outgoing edges

— p1 >0 °

Y A . .

. 07 ' o ' °
e 9 n layers



More constraints?

(8,7n)-ROBP

oo :

LS-‘
n

layers |

(8,n)-ROBP

o :

LS-‘
n

layers |

can be combined to get (S%,n)-ROBP for

intersection

additive approximation preserved




+ rejection sampling ~ Dyer2003: Sgrnefneess

w,..w,L
\\ . Tr=-= e
— TEM ot ey s

approximate counter e o solutons 2
2w limit M) s
W, = L ' L'=n2  TIM] = T0-1.M] + T-1,M-w)]
d_ + rejection sampling :{} approximate counter
roundaing:
Wi” - |_ Wi: J

1) get more solutions, Q" o Q'
2) not too many more, |QQ”|< (n+1)|C|

Proof:
S"e Q" -, X heaviest in S”, then S” - (X}’

1) uniform distribution given by (2’ can be given
by small space source

2) additive approximation =
multiplicative approximation



ROBP for knapsack

More constraints?

. More constraints?
d N\ S (S, n)-ROBP (S,n)-ROBP
can be generalized to distributions M B \\>’ . .
given by small space sources. oficolmcs . Y ' ' ' ay . .
\Pml}lﬂm;widmmhlge : : X - . :_ 3 cee B
Solution: reduce widih by approximating S n . o 1 .
small space sources = ; o AN ; B AN
e - = = - ayers Ayers
ROBP + probability distributions on outgoing edges . . . .
.
. can be combined to get (S2,n)-ROBP for
: . intersection
. n layers .
W : : : \/ additive approximation preserved

+ rejection sampling ~ Dyer2003:

TILM]
approximate counter (e of solsions
- 5 it )
How to deal with w) = ani L=r?  TEMI=TE4 M+ TR0 M
more constraints ? rounding: S S Smedme e
(e.g., contingency tables, w=Lw

multi-dimensional knapsack, ...) 1) get more solutions, Q" > Q'

2) not too many more, |Q"[< (n+1)|Q]

Proof:
S"e Q" -, Xheaviest in §”, then S” - {X}e¥’

multi-dimensional knapsack:

How many Sc [n]

with 1)uniform distribution given by Q2” can be given by small
je{1,....K space source
.stj,i ST U p
i €
are there? 2) additive approximation = multiplicative approximation

O( (n/s)o(kz) log W) algorithm



Other problems:

contingency tables
with constant
number of rows

More constraints? Maore constraints?

"L‘“: = : (,n)-ROBP (8, 1-ROBP
can be generalized to distributions ‘ls o
given by small space sources. » & G b (S . 3 . .
Frovm: v " < SR
Tl -. . n . * -. -, !
small space sources = i o i | -
ROBP + probability distributions on outgoing edges o :
Pi
can be combined to get (S?,n)-ROBP for
) : intersection
. 5 n lave:
w additive approximation preserved
*

How to deal with S RN

more constraints ? = :
wr=Lw |

(e.g.. contingency tables, _
multi-dimensienal knapsack 1) get more solutions, 0" S Q'
2) not oo many more, J1°}< (n+1))0Y]
= Proof:
b e O7- O, X heavioetin S, then §” - =t

multi-dimenzsional knap=zack: -: L

1)uniform distribution given by (2" can be given by small
Space source

with
ZW”S LI je{1,... k}

are there? 2) additive approximation = mulfiplicative approximation

O (n/e)°* log W) algorithm

What other problems are solvable

using the technique?

Thanks!



