Adaptive annealing: a near-optimal connection between sampling and counting

Daniel Štefankovič (University of Rochester)

Santosh Vempala Eric Vigoda (Georgia Tech)

Adaptive and

optimal

If you want to count using MCMC then statistical physics is useful.

Outline

- 1. Counting problems
- 2. Basic tools: Chernoff, Chebyshev
- 3. Dealing with large quantities (the product method)
- 4. Statistical physics
- 5. Cooling schedules (our work)
- 6. More...

Counting

independent sets

spanning trees

matchings

perfect matchings

k-colorings

Counting

independent sets

spanning trees

matchings

perfect matchings

k-colorings

Compute the number of

spanning trees

Compute the number of

spanning trees

polynomial-time algorithm

number of spanning trees of G

Counting

independent sets

spanning trees

matchings

perfect matchings

k-colorings

Compute the number of

independent sets (hard-core gas model)

independent set _ of a graph subset S of vertices, no two in S are neighbors

independent set = subset S of vertices no two in S are neighbors

independent sets = 5598861

independent set = subset S of vertices no two in S are neighbors

Compute the number of

independent sets

polynomial-time algorithm

number of independent sets of G

#P-complete even for 3-regular graphs (Dyer, Greenhill, 1997)

graph $G \mapsto #$ independent sets in G

approximation

randomization

graph $G \mapsto \#$ independent sets in G

approximation

which is more important?

randomization

graph $G \mapsto \#$ inder

sets in G

My world-view:

(true) randomness is important conceptually but <u>NOT</u> computationally (i.e., <u>I believe</u> P=BPP).

approximation makes problems easier (i.e., <u>I believe</u> #P**#**BPP)

important?

"Y gives ($1\pm\epsilon$)-estimate"

We would like to know Q

Goal: random variable I such that $P((1-\epsilon)Q \le Y \le (1+\epsilon)Q) \ge 1-\delta$

(fully polynomial randomized approximation scheme):

RA

G,**E**,Ò

polynomial-time algorithm

Outline

- 1. Counting problems
- 2. Basic tools: Chernoff, Chebyshev
- 3. Dealing with large quantities (the product method)
- 4. Statistical physics
- 5. Cooling schedules (our work)
- 6. More...

We would like to know Q

1. Get an unbiased estimator X, i. e.,

$\mathsf{E}[\mathsf{X}] = \mathsf{Q}$

2. "Boost the quality" of X:

$$Y = \frac{X_1 + X_2 + ... + X_n}{n}$$

The Bienaymé-Chebyshev inequality

We would like to know Q

"Y gives $(1\pm\epsilon)$ -estimate"

P(Y gives (1± ε)-estimate) $\geq 1 - \frac{V[Y]}{E[Y]^2} \frac{1}{\varepsilon^2}$

squared coefficient of variation SCV

 $X_1 + X_2 + ... + X_n$ V[Y] E[Y]² = <u>1</u> V[X] n E[X]² n

The Bienaymé-Chebyshev inequality

Let X₁,...,X_n,X be independent, identically distributed random variables, Q=E[X]. Let

$$Y = \frac{X_1 + X_2 + ... + X_n}{n}$$

Then

P(Y gives (1± ε)-estimate of Q) $\geq 1 - \frac{V[X]}{n E[X]^2} \frac{1}{\varepsilon^2}$

Chernoff's bound

Let $X_1, ..., X_n, X$ be independent, identically distributed random variables, $0 \le X \le 1$, Q=E[X]. Let

$$Y = \frac{X_1 + X_2 + ... + X_n}{n}$$

Then

P(Y gives $(1\pm\epsilon)$ -estimate of Q) $\geq 1 - e^{-\epsilon^2} \cdot n \cdot E[X]/3$

$$\mathbf{n} = \frac{\mathbf{V}[\mathbf{X}]}{\mathbf{E}[\mathbf{X}]^2} \frac{\mathbf{1}}{\epsilon^2} \frac{\mathbf{1}}{\delta}$$

Number of samples to achieve precision ϵ with confidence δ .

$$n = \frac{1}{E[X]} \frac{3}{\epsilon^2} \ln (1/\delta)$$

Number of samples to achieve precision ϵ with confidence δ .

Median "boosting trick"

$$n = \frac{1}{E[X]} \frac{4}{\epsilon^2}$$

$$Y = \frac{X_1 + X_2 + ... + X_n}{n}$$

BY BIENAYME-CHEBYSHEV: ►) ≥ 3/4 Ρ(\in $(1-\varepsilon)Q$ $(1+\varepsilon)Q$

Median trick – repeat 2T times $(1-\varepsilon)Q$ $(1+\varepsilon)Q$ **BY BIENAYME-CHEBYSHEV:**) ≥ 3/4 \downarrow **BY CHERNOFF:** out of 2T $) \ge 1 - e^{-T}$ -/4 ≥1-e^{-T/4} median is in Ρ

 $\mathbf{n} = \frac{\mathbf{V}[\mathbf{X}]}{\mathbf{E}[\mathbf{X}]^2} \frac{\mathbf{32}}{\epsilon^2} \ln (1/\delta)$

+ median trick

Creating "approximator" from X $\varepsilon = \text{precision}$ $\delta = \text{confidence}$

Outline

- 1. Counting problems
- 2. Basic tools: Chernoff, Chebyshev
- 3. Dealing with large quantities (the product method)
- 4. Statistical physics
- 5. Cooling schedules (our work)
- 6. More...
(approx) counting \Leftrightarrow sampling

Valleau, Card'72 (physical chemistry), Babai'79 (for matchings and colorings), Jerrum, Valiant, V.Vazirani'86

the outcome of the JVV reduction: random variables: $X_1 X_2 \dots X_t$ such that 1) $E[X_1 X_2 ... X_t] = "WANTED"$ 2) the X_i are easy to estimate V[X_j] squared coefficient $E[X_i]^2 = O(1)$ of variation (SCV)

(approx) counting \Leftrightarrow sampling 1) $E[X_1 X_2 ... X_t] = "WANTED"$ 2) the X_i are easy to estimate $\frac{V[X_i]}{E[X_i]^2} = O(1)$ **Theorem (Dyer-Frieze'91)** $O(t^2/\epsilon^2)$ samples (O(t/ ϵ^2) from each X_i) give **1** $\pm\epsilon$ estimator of "WANTED" with prob \geq 3/4

JVV for independent sets

GOAL: given a graph G, estimate the number of independent sets of G

independent sets

Self-reducibility for independent sets

Self-reducibility for independent sets

then FPRAS using O(n²) samples.

Application – independent sets

O*(|V|) samples suffice for counting

Cost per sample (Vigoda'01,Dyer-Greenhill'01 time = $O^*(|V|)$ for graphs of degree ≤ 4 .

Total running time: $O^*(|V|^2).$ Other applications matchings $O^{*}(n^{2}m)$ (using Jerrum, Sinclair'89) spin systems: Ising model **O**^{*}(n²) for $\beta < \beta_{c}$ (using Marinelli, Olivieri'95)

k-colorings $O^*(n^2)$ for k>2 Δ (using Jerrum'95)

Outline

- 1. Counting problems
- 2. Basic tools: Chernoff, Chebyshev
- 3. Dealing with large quantities (the product method)
- 4. Statistical physics
- 5. Cooling schedules (our work)
- 6. More...

Hamiltonian H: $\Omega \rightarrow \{0,...,n\}$

Goal: estimate |H⁻¹(0)|

$|H^{-1}(0)| = E[X_1] \dots E[X_t]$

Distributions between hot and cold

 β = inverse temperature

 $\beta = 0 \implies hot \Rightarrow uniform on \Omega$ $\beta = \infty \implies cold \Rightarrow uniform on H^{-1}(0)$

μ_{β} (x) \propto exp(-H(x) β)

(Gibbs distributions)

Distributions between hot and cold

$\mu_{\beta}(\mathbf{x}) \propto \exp(-\mathbf{H}(\mathbf{x})\beta)$ $\mu_{\beta}(\mathbf{x}) \stackrel{\downarrow}{=} \frac{\exp(-H(\mathbf{x})\beta)}{Z(\beta)}$ **Normalizing factor = partition function** $Z(\beta) = \sum exp(-H(x)\beta)$

 $\mathbf{X} \in \Omega$

Partition function

$Z(\beta) = \sum exp(-H(x)\beta)$ $\mathbf{X} \in \Omega$

have: $Z(0) = \Omega$ want: $Z(\infty) = |H^{-1}(0)|$

Assumption: we have a sampler oracle for μ_B $exp(-H(x)\beta)$ μ_{β} (X) = **Ζ(**β)

SAMPLER graph G ORACLE

ß

subset of V from μ_{β}

Assumption: we have a sampler oracle for μ_{β} $\mu_{\beta} (\mathbf{x}) = \frac{\exp(-H(\mathbf{x})\beta)}{Z(\beta)}$

Assumption: we have a sampler oracle for μ_{β} $exp(-H(x)\beta)$ μ_{β} (x) = **Ζ(**β) $W \sim \mu_{\beta} \rightarrow X = \exp(H(W)(\beta - \alpha))$

Assumption: we have a sampler oracle for μ_{β} $\mu_{\beta}(\mathbf{x}) = \frac{\exp(-H(\mathbf{x})\beta)}{\beta}$ **Ζ(**β) $W \sim \mu_{\beta} \rightarrow X = \exp(H(W)(\beta - \alpha))$ can obtain the following ratio: (α) $\mathbf{E}[\mathbf{X}] = \sum \mu_{\beta}(\mathbf{s}) \mathbf{X}(\mathbf{s}) =$ $\mathbf{S} \in \Omega$

Our goal restated $Z(\infty) = \frac{Z(\beta_1)}{Z(\beta_0)} \frac{Z(\beta_2)}{Z(\beta_1)} \dots \frac{Z(\beta_t)}{Z(\beta_{t-1})} Z(0)$

Cooling schedule:

$$\beta_0 = 0 < \beta_1 < \beta_2 < \dots < \beta_t = \infty$$

How to choose the cooling schedule?

minimize length, while satisfying

 $\frac{V[X_i]}{E[X_i]^2} = O(1) \qquad E[X_i] = \frac{Z(\beta_i)}{Z(\beta_{i-1})}$

Outline

- 1. Counting problems
- 2. Basic tools: Chernoff, Chebyshev
- 3. Dealing with large quantities (the product method)
- 4. Statistical physics
- 5. Cooling schedules (our work)

Parameters: A and N $Z(\beta) = \sum exp(-H(x)\beta)$ $\mathbf{X} \in \Omega$ Z(0) = A $\mathsf{H}:\Omega\to\{\mathbf{0},\ldots,\mathbf{n}\}$ n $a_k e^{-\beta k}$ $Z(\beta) =$ $a_{k} = |H^{-1}(k)|$

Parameters			
$Z(0) = A \qquad H:\Omega \to \{0,\ldots,n\}$			
	A	n	
independent sets	2 ^v	Ε	
matchings	≈V!	V	
perfect matchings	V!	V	
k-colorings	kv	Ε	

matchings = # ways of marrying them so that no unhappy couple

matchings = # ways of marrying them so that no unhappy couple

matchings = # ways of marrying them so that no unhappy couple

marry ignoring "compatibility" hamiltonian = number of unhappy couples

Parameters			
$Z(0) = A \qquad H:\Omega \to \{0,\ldots,n\}$			
	A	n	
independent sets	2 ^v	Ε	
matchings	≈V!	V	
perfect matchings	V!	V	
k-colorings	kv	Ε	

Previous cooling schedules $Z(0) = A \qquad H:\Omega \rightarrow \{0,...,n\}$ $\beta_0 = 0 < \beta_1 < \beta_2 < \dots < \beta_t = \infty$ "Safe steps" $\beta \rightarrow \beta$ + 1/n (Bezáková, Štefankovič, $\beta \rightarrow \beta$ (1 + 1/ln A) Vigoda, V. Vazirani'06) $\ln A \rightarrow \infty$ **Cooling schedules of length** <u>O(n ln A)</u> (Bezáková, Štefankovič, O((In n) (In A)) Vigoda, V. Vazirani'06)

Our goal restated Previous cooling $Z(\infty) = \frac{Z(\beta_1)}{Z(\beta_0)} \frac{Z(\beta_2)}{Z(\beta_1)} \cdots \frac{Z(\beta_t)}{Z(\beta_{t-1})} Z(0)$ Z(0) = A**Cooling schedule:** $\beta_0 = 0 < \beta_1 < \beta_2 < \dots < \beta_t = \infty$ How to choose the cooling schedule? $\beta_0 = 0 < \beta_1 < \beta$ minimize length, while satisfying $\frac{\mathsf{V}[\mathsf{X}_i]}{\mathsf{E}[\mathsf{X}_i]^2} = \mathsf{O}(1) \qquad \mathsf{E}[\mathsf{X}_i] = \frac{\mathsf{Z}(\beta_i)}{\mathsf{Z}(\beta_{i-1})}$ "Safe steps" $\beta \rightarrow \beta$ + 1/n (Bezáková, Štefankovič, $\beta \rightarrow \beta$ (1 + 1/ln A) Vigoda, V. Vazirani'06) $\ln A \rightarrow \infty$ **Cooling schedules of length** O(nlnA) (Bezáková, Štefankovič, O((In n) (In A)) Vigoda, V. Vazirani'06)

"Safe steps"

 $\beta \rightarrow \beta + 1/n$ $\beta \rightarrow \beta (1 + 1/ln A)$ $\ln A \rightarrow \infty$

(Bezáková, Štefankovič, Vigoda, V. Vazirani'06)

"Safe steps"

 $\beta \rightarrow \beta + 1/n$ $\beta \rightarrow \beta (1 + 1/ln A)$ $\ln A \rightarrow \infty$

(Bezáková, Štefankovič, Vigoda, V. Vazirani'06)

Previous cooling schedules

1/n, 2/n, 3/n, , (ln A)/n, , ln A

"Safe steps" $\beta \rightarrow \beta + 1/n$ $\beta \rightarrow \beta (1 + 1/ln A)$ (Bezákovi $\ln A \rightarrow \infty$ Cooling schedules of length O(n ln A) (Bezákovi Vigod

(Bezáková, Štefankovič, Vigoda, V. Vazirani'06)

(Bezáková, Štefankovič, Vigoda, V. Vazirani'06) No better fixed schedule possible $\mathsf{Z}(0) = \mathsf{A} \qquad \mathsf{H}:\Omega \to \{\mathbf{0},\ldots,\mathsf{n}\}$ THEOREM: A schedule that works for all $Z_{a}(\beta) = \frac{A}{1+a} (1 + a e^{-\beta n})$ (with $a \in [0, A-1]$)

has $LENGTH \ge \Omega((\ln n)(\ln A))$

Parameters

Z(0) = A $H:\Omega \rightarrow \{0,...,n\}$ Our main result:

can get <u>adaptive</u> schedule of length O^{*} ((In A)^{1/2})

Previously: <u>non-adaptive</u> schedules of length $\Omega^*(\ln A)$

can get <u>adaptive</u> schedule of length O* ((In A)^{1/2})

Lovász-Vempala Volume of convex bodies in O^{*}(n⁴) schedule of length O(n^{1/2})

(<u>non-adaptive</u> cooling schedule, using specific properties of the "volume" partition functions)

Existential part

Lemma:

for every partition function there exists a cooling schedule of length $O^*((\ln A)^{1/2})$

<u>there exists</u> can get <u>adaptive</u> schedule of length O* ((In A)^{1/2})

Cooling schedule:

$$\beta_0 = 0 < \beta_1 < \beta_2 < \dots < \beta_t = \infty$$

How to choose the cooling schedule?

minimize length, while satisfying

 $\frac{V[X_i]}{E[X_i]^2} = O(1) \quad E[X_i] = \frac{Z(\beta_i)}{Z(\beta_{i-1})}$

Properties of partition functions

 $f(\gamma) = \ln Z(\gamma)$

f is decreasing f is convex $f'(0) \ge -n$ $f(0) \le \ln A$

c := (a+b)/2, Δ := b-a have f(c) = (f(a)+f(b))/2 - 1

c := (a+b)/2, $\Delta := b-a$ have f(c) = (f(a)+f(b))/2 - 1

Let $K := \Delta f$

 $\Delta(\ln |\mathbf{f'}|) \geq \frac{1}{K}$

Then

 $fis convex \implies (f(a) - f(c)) / \Delta \le f'(a) \\ (f(c) - f(b)) / \Delta \ge f'(b)$

f:[a,b] \rightarrow R, convex, decreasing can be "approximated" using

Express SCV using partition function (going from β to α) $E[X] = \frac{Z(\alpha)}{Z(\beta)}$ $W \sim \mu_{\beta} \rightarrow X = \exp(H(W)(\beta - \alpha))$ $\frac{\mathsf{E}[\mathsf{X}^2]}{\mathsf{E}[\mathsf{X}]^2} = \frac{\mathsf{Z}(2\alpha - \beta) \, \mathsf{Z}(\beta)}{\mathsf{Z}(\alpha)^2} \leq \mathsf{C}$ **E[X]**²

In In A extra steps

Existential \rightarrow Algorithmic can get <u>adaptive</u> schedule of length O* ((In A)^{1/2}) can get adaptive schedule of length O* ((In A)^{1/2})

Algorithmic construction Our main result: using a sampler oracle for μ_{β}

$\mu_{\beta}(\mathbf{x}) = \frac{\exp(-H(\mathbf{x})\beta)}{Z(\beta)}$

we can construct a cooling schedule of length $\leq 38 (\ln A)^{1/2} (\ln \ln A) (\ln n)$

Total number of oracle calls $\leq 10^7 (\ln A) (\ln \ln A + \ln n)^7 \ln (1/\delta)$

current inverse temperature β

ideally move to α such that

current inverse temperature β

ideally move to α such that

 $B_{1} \leq \frac{E[X^{2}]}{E[X]^{2}} \leq B_{2} \qquad E[X] = \frac{Z(\alpha)}{Z(\beta)}$ X is "easy to estimate"

current inverse temperature β

ideally move to α such that

 $B_{1} \leq \frac{E[X^{2}]}{E[X]^{2}} \leq B_{2} \qquad E[X] = \frac{Z(\alpha)}{Z(\beta)}$ we make progress (where $B_{1} > 1$)

current inverse temperature β

ideally move to α such that

 $B_{1} \leq \frac{E[X^{2}]}{E[X]^{2}} \leq B_{2} \qquad E[X] = \frac{Z(\alpha)}{Z(\beta)}$

need to construct a "feeler" for this

current inverse temperature β

ideally move to $\boldsymbol{\alpha}$ such that

current inverse temperature β

estimator for $\frac{Z(\beta)}{\beta}$ **Ζ(**α**)** n <mark>Ζ(β)</mark> = a_k e^{-β k} **k=0** For W ~ μ_{β} we have P(H(W)=k) = $\frac{a_k e^{-\beta k}}{2}$ **Ζ(**β)

estimator for $\frac{Z(\beta)}{\beta}$ **Ζ(**α**)** If H(X)=k likely at both α , $\beta \Rightarrow$ estimator $\left[\right]$ a_k e^{-β k} **Ζ(**β) = k=() a_k e^{-β k} For $W \sim \mu_{\beta}$ we have $P(H(W)=k) = \frac{1}{2}$ **Ζ(**β) a_k e^{-α k} For U ~ μ_{α} we have P(H(U)=k) = - $Z(\alpha)$

Rough estimator for <u>Z(B)</u> **Ζ(**α) If $|\alpha - \beta| \cdot |\mathbf{d} - \mathbf{c}| \leq 1$ then $\frac{1}{e} \frac{Z(\beta)}{Z(\alpha)} \leq \frac{P(H(U) \in [c,d])}{P(H(W) \in [c,d])} e^{c(\alpha - \beta)} \leq e \frac{Z(\beta)}{Z(\alpha)}$ We also need $P(H(U) \in [c,d])$ $P(H(W) \in [c,d])$ to be large d $\sum \mathbf{a_k} \mathbf{e}^{-\alpha \mathbf{k}}$ $\sum \mathbf{a_k} \mathbf{e}^{-\alpha}$ (k-c) k=c _k=c **e^{c(α-β)}** = d d ンa_k e^{-β k} ∠ a_k e^{-β} (k-c)

We will:

Split $\{0,1,...,n\}$ into $h \le 4(\ln n) \sqrt{\ln A}$ intervals $[0],[1],[2],...,[c,c(1+1)/\ln A)],...$

for any inverse temperature β there exists a interval with P(H(W) \in I) \geq 1/8h We say that I is HEAVY for β

for any inverse temperature β there exists a interval with P(H(W) \in I) \geq 1/8h We say that I is HEAVY for β

Algorithm repeat find an interval I which is heavy for the current inverse temperature β see how far I is heavy (until some β^*) Z(β) Z(2 β - α) use the interval I for the feeler $Z(\alpha)$ $Z(\alpha)$ **ANALYSIS:** either * make progress, or * eliminate the interval I * or make a "long move"

distribution of h(X) where $X \sim \mu_{\beta}$

Algorithm repeat lis I is NOT find an interval I which is heavy for heavy heavy the current inverse temperature β see how far I is heavy (until some β^*) β **Ζ(**β) **Ζ(2**β–α) use the interval I for the feeler -**Ζ(**α) **Ζ(**α) distribution of h(X) where $X \sim \mu_v$ no longer heavy at γ I = a heavy interval at β

Algorithm

repeat

find an interval I which is heavy for the current inverse temperature β

see how far I is heavy (until some β^*) use the interval I for the feeler $\frac{Z(\beta)}{Z(\alpha)} = \frac{Z(2\beta - \alpha)}{Z(\alpha)}$

distribution of h(X) where $X \sim \mu_{\gamma'}$

Algorithm

repeat

use binary search to find β^*

 $\alpha = \min\{1/(b-a), \ln A\}$

Algorithm

repeat

use binary search to find β^{*} α = min{1/(b-a), In A} How do you know that you can use binary search?

How do you know that you can use binary search?

$$\sum_{k \in I} a_k e^{-\beta k} \ge \frac{1}{8h} \sum_{k=0}^{n} a_k e^{-\beta k}$$

Descarte's rule of signs:

$$c_0 x^0 + c_1 x^1 + c_2 x^2 + \dots + c_n x^n$$

sign change

number of positive roots

 \leq number of sign changes

e-β

How do you know that you can use binary search?

Descarte's rule of signs:

$$c_0 x^0 + c_1 x^1 + c_2 x^2 + \dots + c_n x^n$$

sign change

number of positive roots $\frac{1}{2} \frac{1}{2} \frac{1}$

How do you know that you can use binary search?

$$\sum_{k \in I} a_k e^{-\beta k} \ge \frac{1}{8h} \sum_{k=0}^{n} a_k e^{-\beta k}$$

Descarte's rule of signs:

$$c_0 x^0 + c_1 x^1 + c_2 x^2 + \dots + c_n x^n$$

sign change

number of positive roots

 \leq number of sign changes

 $\frac{\mathsf{Z}(\beta)}{\mathsf{Z}(\alpha)} \quad \frac{\mathsf{Z}(2\beta - \alpha)}{\mathsf{Z}(\alpha)} \leq \mathbf{C}$

can roughly compute ratio of $Z(\alpha)/Z(\alpha')$ for $\alpha, \alpha' \in [\beta, \beta^*]$ if $|\alpha - \alpha| . |b - a| \le 1$

```
input : A black-box sampler for X \sim \mu_{\beta} for any \beta \geq 0, starting inverse temperature \beta_0.
output: A cooling schedule for Z.
Bad \leftarrow \emptyset
print \beta_0
if \beta_0 < \ln A then
    I \leftarrow \text{FIND-HEAVY}(\beta_0, \text{Bad})
    w \leftarrow the width of I
    L \leftarrow \min\{\beta_0 + 1/w, \ln A\};
                                                                                                         (where 1/0 = \infty)
     \beta^* \leftarrow \text{binary search on } \beta^* \in [\beta_0, L] \text{ with precision } 1/(2n), \text{ using predicate}
    IS-HEAVY(\beta^*, I)
     \beta \leftarrow binary search on \beta \in [\beta_0, (\beta^* + \beta_0)/2] with precision 1/(4n),
              using predicate \operatorname{Est}(I, \beta_0, \beta) \cdot \operatorname{Est}(I, 2\beta - \beta_0, \beta) < 2000
     if \beta < (\beta^* + \beta_0)/2 then
         PRINT-COOLING-SCHEDULE(\beta)
                                                                                                            (optimal move)
     else
         if \beta = L then
              PRINT-COOLING-SCHEDULE(\beta)
                                                                                                                (long move)
          else
              \gamma \leftarrow (\beta^* - \beta_0)/2
              print \beta_0 + \gamma, \beta_0 + (3/2)\gamma, \beta_0 + (7/4)\gamma, ..., \beta_0 + (2 - 2^{-\lceil \ln \ln A \rceil})\gamma
              Bad \leftarrow Bad \cup I
              PRINT-COOLING-SCHEDULE(\beta^*)
                                                                                                            (interval move)
         end
     end
else
     print \infty
end
```

if we have sampler oracles for μ_β then we can get adaptive schedule of length t=O* ((ln A)^{1/2})

independent sets O^{*}(n²) (using Vigoda'01, Dyer-Greenhill'01)

matchings O^{*}(n²m) (using Jerrum, Sinclair'89)

Outline

- 1. Counting problems
- 2. Basic tools: Chernoff, Chebyshev
- 3. Dealing with large quantities (the product method)
- 4. Statistical physics
- 5. Cooling schedules (our work)

Outline

6. More...

a) proof of Dyer-Frieze

b) independent sets revisited

c) warm starts

Appendix – proof of: 1) $E[X_1 X_2 ... X_t] = "WANTED"$ 2) the X_i are easy to estimate $\frac{V[X_i]}{E[X_i]^2} = O(1)$ Theorem (Dyer-Frieze'91) $O(t^2/\epsilon^2)$ samples (O(t/ ϵ^2) from each X_i) give **1** $\pm\epsilon$ estimator of "WANTED" with prob>3/4

How precise do the X_i have to be? First attempt – term by term Main idea:

$$\frac{(1\pm\frac{\varepsilon}{t})(1\pm\frac{\varepsilon}{t})(1\pm\frac{\varepsilon}{t})\dots(1\pm\frac{\varepsilon}{t})\approx 1\pm\varepsilon}{t} \approx 1\pm\varepsilon$$

$$\mathbf{n} = \Theta\left(\frac{\mathbf{V}[\mathbf{X}]}{\mathbf{E}[\mathbf{X}]^2} \frac{1}{\varepsilon^2} \ln(1/\delta)\right)$$

each term Ω (t²) samples $\Rightarrow \Omega$ (t³) total

How precise do the X_i have to be?

Analyzing SCV is better (Dyer-Frieze'1991)

$$X=X_1 X_2 \dots X_t$$

GOAL: SCV(X) $\leq \epsilon^2/4$

squared coefficient of variation (SCV)

P(X gives (1± ϵ)-estimate) $\geq 1 - \left(\frac{V[X]}{E[X]^2} \frac{1}{\epsilon^2}\right)$ How precise do the X_i have to be?

Analyzing SCV is better (Dyer-Frieze'1991)

Main idea:

$$SCV(X_i) \le \frac{\epsilon^{2/4}}{t} \implies SCV(X) \lesssim \epsilon^{2/4}$$

proof: <u>SCV(X) = (1+SCV(X₁)) ... (1+SCV(X_t)) - 1</u>

$$SCV(X) = \frac{V[X]}{E[X]^2} = \frac{E[X^2]}{E[X]^2} -1$$

$$SCV(X) = \frac{V[X]}{E[X]^2} = \frac{E[X^2]}{E[X]^2} -1$$

proof: SCV(X) = $(1+SCV(X_1)) \dots (1+SCV(X_t)) - 1$

$$SCV(X_i) \leq \frac{t}{t} \Rightarrow SCV(X) \leq \epsilon^{2/4}$$

How pre

Main idea

Analy

 $\begin{array}{l} X_1, X_2 \text{ independent} \Rightarrow \\ SCV(X_1X_2) = (1 + SCV(X_1))(1 + SCV(X_2)) - 1 \end{array}$

 X_1, X_2 independent $\Rightarrow X_1^2, X_2^2$ independent

 X_1, X_2 independent $\Rightarrow E[X_1 X_2] = E[X_1]E[X_2]$

How precise do the X_i have to be? Analyzing SCV is better (Dyer-Frieze'1991) $X = X_1 X_2 \dots X_t$

Main idea:

$$SCV(X_i) \le \frac{\epsilon^{2/4}}{t} \implies SCV(X) \lesssim \epsilon^{2/4}$$

each term $O(t/\epsilon^2)$ samples $\Rightarrow O(t^2/\epsilon^2)$ total

Outline

6. More...

a) proof of Dyer-Frieze
b) independent sets revisited
c) warm starts

What would be a natural hamiltonian for planar graphs?

What would be a natural hamiltonian for planar graphs?

H(G) = number of edges

natural MC pick u,v uniformly at random $1/(1+\lambda)$ try G - {u,v} $\lambda/(1+\lambda)$ try G + {u,v}

 $(\lambda = exp(-\beta))$

$\pi(\mathbf{G}) \mathbf{P}(\mathbf{G},\mathbf{G}') = \pi(\mathbf{G}') \mathbf{P}(\mathbf{G}',\mathbf{G})$

satisfies the detailed balance condition

$\pi(\mathbf{G}) \propto \lambda^{\text{number of edges}}$

Outline

6. More...

a) proof of Dyer-Frieze
b) independent sets revisited
c) warm starts
Mixing time: τ_{mix} = smallest t such that $| \mu_t - \pi |_{TV} \le 1/e$

 $\Theta(n \ln n)$

Relaxation time: $\tau_{rel} = 1/(1-\lambda_2)$

Θ(**n**)

 $\tau_{rel} \leq \tau_{mix} \leq \tau_{rel} \ln (1/\pi_{min})$

(discrepancy may be substantially bigger for, e.g., matchings)

Further speed-up

sample at β can be used as a warm start for β '

cooling schedule can step from β ' to β

 $\begin{aligned} |\mu_{t} - \pi |_{TV} &\leq \exp(-t/\tau_{rel}) \operatorname{Var}_{\pi}(\mu_{0}/\pi) \\ & \uparrow \\ & (\sum \pi(x)(\mu_{0}(x)/\pi(x)-1)^{2})^{1/2} \\ & \text{ small} \Rightarrow \text{ called warm start} \end{aligned}$

METHOD 2 (Gillman'98, Kahale'96, ...) $X_1 - X_2 - X_3 - \cdots X_s$

Use analogue of Frieze-Dyer for independent samples from vector variables with slightly dependent coordinates.

if we have sampler oracles for μ_β then we can get adaptive schedule of length t=O* ((ln A)^{1/2})

independent sets O^{*}(n²) (using Vigoda'01, Dyer-Greenhill'01)

matchings O^{*}(n²m) (using Jerrum, Sinclair'89)