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If you want to count 
using MCMC then  
statistical physics
is useful.
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spanning trees

Compute the number of

polynomial-time
algorithmG

number of spanning trees of G



independent sets 

spanning trees

matchings

perfect matchings

k-colorings

Counting ?



independent sets 

Compute the number of

(hard-core gas model)

independent set            subset S of vertices, 
of a graph             no two in S are neighbors

=



# independent sets = 7

independent set = subset S of vertices
no two in S are neighbors
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# independent sets = 
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# independent sets = 5598861

independent set = subset S of vertices
no two in S are neighbors



independent sets

Compute the number of

polynomial-time
algorithmG

number of independent sets of G

?



independent sets

Compute the number of

polynomial-time
algorithmG

number of independent sets of G

!
(unlikely)



#P-complete

#P-complete even for 3-regular graphs

graph G # independent sets in G

(Dyer, Greenhill, 1997)

FP

#P

P

NP
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approximation   

randomization
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graph G # independent sets in G

approximation   

randomization

?
which is 
more important?

My world-view:

(true) randomness is important 
conceptually but NOT computationally
(i.e., I believe P=BPP).

approximation makes problems 
easier (i.e., I believe #P=BPP)



We would like to know Q 

Goal:   random variable  Y such that 

P( (1-ε)Q ≤ Y ≤ (1+ε)Q ) ≥ 1-δ

“Y gives (1±ε)-estimate”



We would like to know Q 

Goal:   random variable  Y such that 

P( (1-ε)Q ≤ Y ≤ (1+ε)Q ) ≥ 1-δ

polynomial-time
algorithmG,ε,δ

FPRAS: 

Y

(fully polynomial randomized approximation scheme):
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We would like to know Q 

1. Get an unbiased estimator  X, i. e., 

E[X] = Q

Y=
X1 + X2 + ... + Xn

n

2. “Boost the quality” of X:



P( Y gives (1±ε)-estimate )

≥ 1 -

The Bienaymé-Chebyshev inequality

V[Y]
E[Y]2

1

ε2



P( Y gives (1±ε)-estimate )

≥ 1 -

Y=
X1 + X2 + ... + Xn

n

The Bienaymé-Chebyshev inequality

V[Y]

E[Y]2
=

1 V[X]

E[X]2n

squared coefficient 
of variation SCV

V[Y]
E[Y]2

1

ε2

⇒



P( Y gives (1±ε)-estimate of Q )  

Let X1,...,Xn,X be independent, identically 
distributed random variables, 
Q=E[X]. Let 

The Bienaymé-Chebyshev inequality 

≥ 1 -
V[X]

n E[X]2

1

ε2

Then

Y=
X1 + X2 + ... + Xn

n



P( Y gives (1±ε)-estimate of Q )  

- ε2 . n . E[X] / 3≥ 1 –

Let X1,...,Xn,X be independent, identically 
distributed random variables, 0 ≤ X ≤ 1, 
Q=E[X]. Let 

Chernoff’s bound 

Y=
X1 + X2 + ... + Xn

n
Then

e





n =
V[X]

E[X]2

1

ε2

1

δ

n =
1

E[X]

3

ε2
ln (1/δ)

0≤X≤1

Number of samples to achieve precision ε with confidence δ.



n =
V[X]

E[X]2

1

ε2

1

δ

n =
1

E[X]

3

ε2
ln (1/δ)

0≤X≤1

Number of samples to achieve precision ε with confidence δ.

BAD
GOOD

BAD



Median “boosting trick”

P( ∈ ) ≥ 3/4

n =
1

E[X]

4

ε2

(1-ε)Q (1+ε)Q

Y=
X1 + X2 + ... + Xn

n

Y

=

BY BIENAYME-CHEBYSHEV:



Median trick – repeat 2T times

(1-ε)Q (1+ε)Q

P( ∈ ) ≥ 3/4

P( ) ≥ 1 - e -T/4> T out of 2T 

median is in
⇒

⇒
P( ) ≥ 1 - e

-T/4

BY BIENAYME-CHEBYSHEV:

BY CHERNOFF:



n =
V[X]

E[X]2

32

ε2

n =
1

E[X]

3

ε2

ln (1/δ)

0≤X≤1

+ median trick

ln (1/δ)

BAD



n =
V[X]

E[X]2

1

ε2
ln (1/δ)Θ( )

Creating “approximator” from X
ε = precision
δ = confidence
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(approx) counting  ⇔ sampling
Valleau,Card’72 (physical chemistry), Babai’79 (for matchings and 
colorings), Jerrum,Valiant,V.Vazirani’86

random variables: X1 X2 ... Xt

E[X1 X2 ... Xt] 

= O(1)
V[Xi]

E[Xi]2

the Xi are easy to estimate

=  “WANTED”

the outcome of the JVV reduction:

such that
1)

2)

squared coefficient 
of variation (SCV)



E[X1 X2 ... Xt] 

= O(1)
V[Xi]

E[Xi]2

the Xi are easy to estimate

=  “WANTED”1)

2)

O(t2/ε2) samples (O(t/ε2) from each Xi) 

give 
1±ε estimator of “WANTED” with prob≥3/4

Theorem (Dyer-Frieze’91)

(approx) counting  ⇔ sampling



JVV for independent sets

P( ) 

1
# independent sets =

GOAL: given a graph G, estimate the 
number of independent sets of G



JVV for independent sets

P(  )

P( ) =

?

?

?

?

?P( )
?

P(  )P( )
X1 X2 X3 X4

Xi ∈ [0,1] and E[Xi] ≥½ ⇒ = O(1)
V[Xi]

E[Xi]2

P(A∩B)=P(A)P(B|A)



JVV for independent sets

P(  )

P( ) =

?

?

?

?

?P( )
?

P(  )P( )
X1 X2 X3 X4

Xi ∈ [0,1] and E[Xi] ≥½ ⇒ = O(1)
V[Xi]

E[Xi]2

P(A∩B)=P(A)P(B|A)



Self-reducibility for independent sets

?

?

?P(     ) 5
7=



?

?

?P(     ) 5
7=

5
7=

Self-reducibility for independent sets
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Self-reducibility for independent sets
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Self-reducibility for independent sets



?

?P(     ) 3
5=

3
5= 3

5=

Self-reducibility for independent sets



3
5

5
7= 5

7=

3
5

5
7= 2

3 = 7

Self-reducibility for independent sets



SAMPLER
ORACLEgraph G

random 
independent
set of G

JVV: If we have a sampler oracle:

then FPRAS using O(n2) samples.  



SAMPLER
ORACLEgraph G

random 
independent
set of G

JVV: If we have a sampler oracle:

then FPRAS using O(n2) samples.  

SAMPLER
ORACLE

β, graph G set from
gas-model 
Gibbs at β

ŠVV: If we have a sampler oracle:

then FPRAS using O*(n) samples.  



O*( |V| ) samples suffice for counting

Application – independent sets

Cost per sample (Vigoda’01,Dyer-Greenhill’01)
time = O*( |V| ) for graphs of degree ≤ 4.

Total running time:
O* ( |V|2 ). 



Other applications

matchings O*(n2m)
(using Jerrum, Sinclair’89)

spin systems: 
Ising model            O*(n2) for β<βC

(using Marinelli, Olivieri’95)

k-colorings             O*(n2) for k>2Δ
(using Jerrum’95)

total running time
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easy = hot

hard = cold



Hamiltonian

1

2

4

0



Hamiltonian
H : Ω → {0,...,n}

Big set = Ω

Goal: estimate |H-1(0)|

|H-1(0)| = E[X1] ... E[Xt ]



Distributions between hot and cold

μβ (x) ∝ exp(-H(x)β)

β = inverse temperature

β = 0    ⇒ hot ⇒ uniform on Ω
β = ∞ ⇒ cold ⇒ uniform on H-1(0)  

(Gibbs distributions)



μβ (x) =

Normalizing factor = partition function

exp(-H(x)β)

Z(β)=  ∑ exp(-H(x)β)
x∈Ω

Z(β)

Distributions between hot and cold

μβ (x) ∝ exp(-H(x)β)



Partition function

Z(β)=  ∑ exp(-H(x)β)
x∈Ω

have:     Z(0) = |Ω|
want:     Z(∞) = |H-1(0)|



Partition function - example

Z(β)=  ∑ exp(-H(x)β)
x∈Ω

have:     Z(0) = |Ω| 
want:     Z(∞) = |H-1(0)|

1
2

4

0

Z(β) =         1 e-4.β

+ 4 e-2.β

+ 4 e-1.β

+ 7 e-0.β

Z(0) = 16
Z(∞)=7



μβ (x) = exp(-H(x)β)
Z(β)

Assumption: 
we have a sampler oracle for μβ

SAMPLER
ORACLE

graph G
β

subset of V
from μβ



μβ (x) = exp(-H(x)β)
Z(β)

Assumption: 
we have a sampler oracle for μβ

W ∼ μβ



μβ (x) = exp(-H(x)β)
Z(β)

Assumption: 
we have a sampler oracle for μβ

W ∼ μβ X = exp(H(W)(β - α))



μβ (x) = exp(-H(x)β)
Z(β)

Assumption: 
we have a sampler oracle for μβ

W ∼ μβ X = exp(H(W)(β - α))

E[X] =  ∑ μβ(s) X(s) 
s∈Ω

= 
Z(α)
Z(β)

can obtain the following ratio:



Partition function

Z(β) =  ∑ exp(-H(x)β)
x∈Ω

Our goal restated

Goal: estimate Z(∞)=|H-1(0)|

Z(∞) =
Z(β1)   Z(β2)           Z(βt)

Z(β0)  Z(β1)           Z(βt-1)
Z(0)

β0 = 0 < β1 < β 2 < ... < βt = ∞

...



Our goal restated

Z(∞) =
Z(β1)   Z(β2)           Z(βt)

Z(β0)  Z(β1)           Z(βt-1)
Z(0)...

How to choose the cooling schedule?

Cooling schedule:

E[Xi]  =
Z(βi)

Z(βi-1)

V[Xi]

E[Xi]2
= O(1)

minimize length, while satisfying

β0 = 0 < β1 < β 2 < ... < βt = ∞



Our goal restated

Z(∞) =
Z(β1)   Z(β2)           Z(βt)

Z(β0)  Z(β1)           Z(βt-1)
Z(0)...

How to choose the cooling schedule?

Cooling schedule:

E[Xi]  =
Z(βi)

Z(βi-1)

V[Xi]

E[Xi]2
= O(1)

minimize length, while satisfying

β0 = 0 < β1 < β 2 < ... < βt = ∞
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Parameters: A and n

Z(0) = A
H:Ω → {0,...,n}

Z(β) =  ∑ exp(-H(x)β)
x∈Ω

Z(β) = ak e-β k∑
k=0

n

ak = |H-1(k)|



Parameters

Z(0) = A H:Ω → {0,...,n}

independent sets 

matchings

perfect matchings

k-colorings 

2V

V!

kV

A

E

V

V

E

n

≈ V!
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matchings = # ways of marrying them so that no 
unhappy couple
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Parameters

Z(0) = A H:Ω → {0,...,n}

independent sets 

matchings

perfect matchings

k-colorings 

2V

V!

kV

A

E

V

V

E

n

≈ V!

marry ignoring “compatibility”
hamiltonian = number of unhappy couples



Parameters

Z(0) = A H:Ω → {0,...,n}

independent sets 

matchings

perfect matchings

k-colorings 

2V

V!

kV

A

E

V

V

E

n

≈ V!



Previous cooling schedules

Z(0) = A H:Ω → {0,...,n}

β → β + 1/n
β → β (1 + 1/ln A) 
ln A → ∞

“Safe steps”

O( n ln A)
Cooling schedules of length

O( (ln n) (ln A) )

β0 = 0 < β1 < β 2 < ... < βt = ∞

(Bezáková,Štefankovič,
Vigoda,V.Vazirani’06)

(Bezáková,Štefankovič,
Vigoda,V.Vazirani’06)



Previous cooling schedules
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β → β + 1/n
β → β (1 + 1/ln A) 
ln A → ∞

“Safe steps”

O( n ln A)
Cooling schedules of length

O( (ln n) (ln A) )

β0 = 0 < β1 < β 2 < ... < βt = ∞
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β → β + 1/n
β → β (1 + 1/ln A) 
ln A → ∞

“Safe steps”

(Bezáková,Štefankovič,
Vigoda,V.Vazirani’06)

Z(β) = ak e-β k∑
k=0

n
W ∼ μβ X = exp(H(W)(β - α))

1/e ≤ X ≤ 1
V[X]

E[X]2
≤ ≤ e1

E[X]



β → β + 1/n
β → β (1 + 1/ln A) 
ln A → ∞

“Safe steps”

(Bezáková,Štefankovič,
Vigoda,V.Vazirani’06)

Z(β) = ak e-β k∑
k=0

n
W ∼ μβ X = exp(H(W)(β - α))

Z(∞) = a0 ≥ 1
Z(ln A) ≤ a0 + 1
E[X] ≥ 1/2



β → β + 1/n
β → β (1 + 1/ln A)
ln A → ∞

“Safe steps”

(Bezáková,Štefankovič,
Vigoda,V.Vazirani’06)

Z(β) = ak e-β k∑
k=0

n
W ∼ μβ X = exp(H(W)(β - α))

E[X] ≥ 1/2e



Previous cooling schedules

β → β + 1/n
β → β (1 + 1/ln A) 
ln A → ∞

“Safe steps”

O( n ln A)
Cooling schedules of length

O( (ln n) (ln A) )

(Bezáková,Štefankovič,
Vigoda,V.Vazirani’06)

(Bezáková,Štefankovič,
Vigoda,V.Vazirani’06)

1/n, 2/n, 3/n, .... , (ln A)/n, .... , ln A



No better fixed schedule possible

Z(0) = A H:Ω → {0,...,n}

Za(β) =          (1 + a e          ) A
1+a

- β n

A schedule that works for all

(with a∈[0,A-1])

has LENGTH ≥ Ω( (ln n)(ln A) )  

THEOREM:



Parameters

Z(0) = A H:Ω → {0,...,n}
Our main result:

non-adaptive schedules 
of length Ω*( ln A )

Previously:

can get adaptive schedule
of length O* (  (ln A)1/2 )



Related work

can get adaptive schedule
of length O* (  (ln A)1/2 )

Lovász-Vempala
Volume of convex bodies in O*(n4)

schedule of length O(n1/2)

(non-adaptive cooling schedule, using  specific properties 
of the “volume” partition functions)



Existential part

for every partition function there exists 
a cooling schedule of length O*((ln A)1/2)

Lemma:

can get adaptive schedule
of length O* (  (ln A)1/2 )

there exists



Cooling schedule (definition refresh)

Z(∞) =
Z(β1)   Z(β2)           Z(βt)

Z(β0)  Z(β1)           Z(βt-1)
Z(0)...

How to choose the cooling schedule?

Cooling schedule:

E[Xi]  =
Z(βi)

Z(βi-1)

V[Xi]

E[Xi]2
= O(1)

minimize length, while satisfying

β0 = 0 < β1 < β 2 < ... < βt = ∞



W ∼ μβ X = exp(H(W)(β - α))

E[X2]

E[X]2

Z(2α-β) Z(β)

Z(α)2
= ≤ C

E[X]
Z(α) 
Z(β)=

Express SCV using partition function

(going from β to α)

V[X]
E[X]2 +1

=



f(γ)=ln Z(γ)

Proof:

E[X2]

E[X]2

Z(2α-β) Z(β)

Z(α)2
= ≤ C

≤ C’=(ln C)/2

β α 2α-β

(f(2α-β) + f(β))/2 ≤
(ln C)/2 + f(α)

graph of f



f(γ)=ln Z(γ)
f is decreasing
f is convex
f’(0) ≥ –n
f(0) ≤ ln A

Properties of partition functions



f(γ)=ln Z(γ)
f is decreasing
f is convex
f’(0) ≥ –n
f(0) ≤ ln A

f(β) = ln ak e-β k∑
k=0

n

f’(β) =

ak k e-β k∑
k=0
-

n

ak e-β k∑
k=0

n

Properties of partition functions

(ln f)’ = 
f’

f



f(γ)=ln Z(γ)

f is decreasing
f is convex
f’(0) ≥ –n
f(0) ≤ ln A

Proof:

either f or f’
changes a lot

Let K:=Δf

Δ(ln |f’|) ≥ 1
K

1
Then

for every partition function there exists 
a cooling schedule of length O*((ln A)1/2)

GOAL: proving Lemma:



Proof:

Let K:=Δf

Δ(ln |f’|) ≥ 1
K

1
Then

c := (a+b)/2, Δ := b-a
have f(c) = (f(a)+f(b))/2 – 1

(f(a) – f(c)) /Δ ≤ f’(a)
(f(c) – f(b)) /Δ ≥ f’(b)

a bc

f is convex



Let K:=Δf

Δ(ln |f’|) ≥ 1
K

Then

c := (a+b)/2, Δ := b-a
have f(c) = (f(a)+f(b))/2 – 1

(f(a) – f(c)) /Δ ≤ f’(a)
(f(c) – f(b)) /Δ ≥ f’(b)

f is convex

f’(b)
f’(a)

≤ 1-1/Δf ≤ e-Δf



f:[a,b] → R, convex, decreasing
can be “approximated” using

f’(a)
f’(b)

(f(a)-f(b))

segments



Proof:

β α 2α-β

Technicality: getting to 2α-β



Proof:

β α 2α-β

βi

βi+1

Technicality: getting to 2α-β



Proof:

β α 2α-β

βi

βi+1
βi+2

Technicality: getting to 2α-β



Proof:

β α 2α-β

βi

βi+1
βi+2

Technicality: getting to 2α-β

βi+3

ln ln A

extra
steps



Existential → Algorithmic

can get adaptive schedule
of length O* (  (ln A)1/2 )

there exists

can get adaptive schedule
of length O* (  (ln A)1/2 )



Algorithmic construction

μβ (x) = exp(-H(x)β)
Z(β)

using a sampler oracle for μβ

we can construct a cooling schedule of length 

≤ 38 (ln A)1/2(ln ln A)(ln n)

Our main result:

Total number of oracle calls

≤ 107 (ln A) (ln ln A+ln n)7 ln (1/δ)



current inverse temperature β

ideally move to α such that

E[X]  =
Z(α)

Z(β)

E[X2]

E[X]2
≤ B2B1 ≤

Algorithmic construction



current inverse temperature β

ideally move to α such that

E[X]  =
Z(α)

Z(β)

E[X2]

E[X]2
≤ B2B1 ≤

Algorithmic construction

X is “easy to estimate”



current inverse temperature β

ideally move to α such that

E[X]  =
Z(α)

Z(β)

E[X2]

E[X]2
≤ B2B1 ≤

Algorithmic construction

we make progress (where B1>1)



current inverse temperature β

ideally move to α such that

E[X]  =
Z(α)

Z(β)

E[X2]

E[X]2
≤ B2B1 ≤

Algorithmic construction

need to construct a “feeler” for this



Algorithmic construction

current inverse temperature β

ideally move to α such that

E[X]  =
Z(α)

Z(β)

E[X2]

E[X]2
≤ B2B1 ≤

need to construct a “feeler” for this

= Z(β)

Z(α)

Z(2β−α)

Z(α)



Algorithmic construction

current inverse temperature β

ideally move to α such that

E[X]  =
Z(α)

Z(β)

E[X2]

E[X]2
≤ B2B1 ≤

need to construct a “feeler” for this

= Z(β)

Z(α)

Z(2β−α)

Z(α)

bad “feeler”



estimator for Z(β)

Z(α)

Z(β) = ak e-β k∑
k=0

n

For W ∼ μβ we have P(H(W)=k) = 
ak e-β k

Z(β)



Z(β) = ak e-β k∑
k=0

n

For W ∼ μβ we have P(H(W)=k) = 
ak e-β k

Z(β)

For U ∼ μα we have P(H(U)=k) = 
ak e-α k

Z(α)

If H(X)=k likely at both α, β ⇒ estimator

Z(β)

Z(α)
estimator for 



Z(β) = ak e-β k∑
k=0

n

For W ∼ μβ we have P(H(W)=k) = 
ak e-β k

Z(β)

For U ∼ μα we have P(H(U)=k) = 
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For W ∼ μβ we have P(H(W)=k) = 
ak e-β k

Z(β)

For U ∼ μα we have P(H(U)=k) = 
ak e-α k

Z(α)

P(H(U)=k)
P(H(W)=k) ek(α-β) = 

Z(β)

Z(α)
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For W ∼ μβ we have P(H(W)=k) = 
ak e-β k

Z(β)

For U ∼ μα we have P(H(U)=k) = 
ak e-α k

Z(α)

P(H(U)=k)
P(H(W)=k) ek(α-β) = 

Z(β)

Z(α)

Z(β)

Z(α)

PROBLEM: P(H(W)=k) can be too small

estimator for 



Rough estimator for 

Z(β) = ak e-β k∑
k=0

n

For W ∼ μβ we have 
P(H(W)∈[c,d]) = 

ak e-β k

Z(β)

∑
k=c

d

Z(β)

Z(α)

For U ∼ μα we have 
P(H(W)∈[c,d]) = 

ak e-α k

Z(α)

∑
k=c

d

interval instead
of single value



P(H(U)∈[c,d])
P(H(W)∈[c,d]) ≤ e ec(α-β)

e 
1

≤

If |α-β|⋅ |d-c| ≤ 1 then

Rough estimator for 

We also need P(H(U) ∈ [c,d]) 
P(H(W) ∈ [c,d])  to be large.

Z(β)

Z(α)

Z(β)

Z(α)

Z(β)

Z(α)

ak e-α k∑
k=c

d

ak e-β k∑
k=c

d ec(α-β) =
ak e-α (k-c)∑

k=c

d

ak e-β (k-c)∑
d

k=c



Split {0,1,...,n} into h ≤ 4(ln n)  ln A
intervals

[0],[1],[2],...,[c,c(1+1/  ln A)],...

for any inverse temperature β there 
exists a interval with P(H(W)∈ I) ≥ 1/8h

We say that I is HEAVY for β

We will:



Split {0,1,...,n} into h ≤ 4(ln n)  ln A
intervals

[0],[1],[2],...,[c,c(1+1/  ln A)],...

for any inverse temperature β there 
exists a interval with P(H(W)∈ I) ≥ 1/8h

We say that I is HEAVY for β

We will:



Algorithm  

find an interval I which is heavy for 
the current inverse temperature β

see how far I is heavy (until some β*)

use the interval I for the feeler 

repeat

Z(β)

Z(α)

Z(2β−α)

Z(α)

either 
* make progress, or
* eliminate the interval I
* or make a “long move”

ANALYSIS:



distribution of h(X) where X∼μβ

...

I = a heavy interval at β

β

I is
heavy



distribution of h(X) where X∼μγ

...

I = a heavy interval at β

β γ

no longer 
heavy at γ !

I is NOT
heavy

I is
heavy



distribution of h(X) where X∼μγ’

...

I = a heavy interval at β

β γ’

heavy at γ’

γ

I is
heavy

I is
heavy

I is NOT
heavy



β

I is
heavy

I is
heavy

I is NOT
heavy

I is
heavy

I is NOT
heavy

use binary search to find β*

β*

β*+1/(2n)

α = min{1/(b-a), ln A}

I=[a,b]

γ’ γ



β

I is
heavy

I is
heavy

I is NOT
heavy

I is
heavy

I is NOT
heavy

use binary search to find β*

β*

β*+1/(2n)

α = min{1/(b-a), ln A}

I=[a,b]

How do you know that you can use binary search?

γ’ γ



I is
heavy

I is
heavy

How do you know that you can use binary search?

I is NOT
heavy

I is NOT
heavy

Lemma: the set of temperatures for which I
is h-heavy is an interval.

ak e-β k∑
k=0

n
ak e-β k∑

k∈I
≥ 1

8h

P(h(X)∈ I) ≥ 1/8h   for   X∼μβI is h-heavy at β



How do you know that you can use binary search?

ak e-β k∑
k=0

n
ak e-β k∑

k∈I
≥ 1

8h

c0 x0 + c1 x1 + c2 x2 + .... + cn xn

Descarte’s rule of signs: 
x=e-β

+ - + +

sign change 
number of 
positive roots

≤
number of 
sign changes 



How do you know that you can use binary search?

ak e-β k∑
k=0

n
ak e-β k∑

k∈I
≥ 1

h

c0 x0 + c1 x1 + c2 x2 + .... + cn xn

Descarte’s rule of signs: 
x=e-β

+ + +

sign change 
number of 
positive roots

≤
number of 
sign changes 

-1+x+x2+x3+...+xn

1+x+x20

-



How do you know that you can use binary search?

ak e-β k∑
k=0

n
ak e-β k∑

k∈I
≥ 1

8h

c0 x0 + c1 x1 + c2 x2 + .... + cn xn

Descarte’s rule of signs: 
x=e-β

+ + +

sign change 
number of 
positive roots

≤
number of 
sign changes 

-



β

I is
heavy

I is
heavy

I is NOT
heavy

β* β*+1/(2n)

can roughly 
compute ratio of

Z(α)/Z(α’) 
for α, α’∈ [β,β*] 
if |α-α|.|b-a|≤ 1

I=[a,b]



β

I is
heavy

I is
heavy

I is NOT
heavy

β* β*+1/(2n)

can roughly 
compute ratio of

Z(α)/Z(α’) 
for α, α’∈ [β,β*] 
if |α-α|.|b-a|≤ 1

I=[a,b]

find largest α such that

Z(β)

Z(α)

Z(2β−α)

Z(α)
≤ C

1. success

2. eliminate interval

3. long move





if we have sampler oracles for μβ
then we can get adaptive schedule

of length t=O* (  (ln A)1/2 )

independent sets       O*(n2)
(using Vigoda’01, Dyer-Greenhill’01)

matchings O*(n2m)
(using Jerrum, Sinclair’89)

spin systems: 
Ising model             O*(n2) for β<βC

(using Marinelli, Olivieri’95)
k-colorings             O*(n2) for k>2Δ

(using Jerrum’95)



1.  Counting problems

2. Basic tools: Chernoff, Chebyshev

3. Dealing with large quantities
(the product method)

4. Statistical physics 

5. Cooling schedules (our work)

6. More... 

Outline



6. More…

a) proof of Dyer-Frieze

b) independent sets revisited

c) warm starts

Outline



O(t2/ε2) samples (O(t/ε2) from each Xi) 

give 
1±ε estimator of “WANTED” with prob≥3/4

Theorem (Dyer-Frieze’91)

Appendix – proof of:

E[X1 X2 ... Xt] 

= O(1)
V[Xi]

E[Xi]2

the Xi are easy to estimate

=  “WANTED”1)

2)



How precise do the Xi have to be?

First attempt – term by term

(1± )(1± )(1± )... (1± ) ≈ 1±εε
t

ε
t

ε
t

ε
t

Main idea:

each term Ω (t2) samples   ⇒ Ω (t3) total

n =
V[X]

E[X]2

1

ε2
ln (1/δ)Θ( )



How precise do the Xi have to be?

Analyzing SCV is better
(Dyer-Frieze’1991)

P( X gives (1±ε)-estimate )

≥ 1 -
V[X]
E[X]2

1

ε2

squared coefficient 
of variation (SCV)

GOAL: SCV(X) ≤ ε2/4

X=X1 X2 ... Xt



How precise do the Xi have to be?

(Dyer-Frieze’1991)

SCV(X) = (1+SCV(X1)) ... (1+SCV(Xt)) - 1 

Main idea:

SCV(Xi) ≤
ε2/4

t ⇒ SCV(X)  <  ε2/4≈

SCV(X)=
V[X]

E[X]2

E[X2]

E[X]2
= -1

Analyzing SCV is better

proof:



How precise do the Xi have to be?

(Dyer-Frieze’1991)

SCV(X) = (1+SCV(X1)) ... (1+SCV(Xt)) - 1 

Main idea:

SCV(Xi) ≤
ε2/4

t ⇒ SCV(X)  <  ε2/4≈

SCV(X)=
V[X]

E[X]2

E[X2]

E[X]2
= -1

Analyzing SCV is better

proof:

X1, X2 independent ⇒ E[X1 X2] = E[X1]E[X2]

X1, X2 independent ⇒ X1
2,X2

2 independent

X1,X2 independent ⇒
SCV(X1X2)=(1+SCV(X1))(1+SCV(X2))-1



How precise do the Xi have to be?

(Dyer-Frieze’1991)

X1 X2 ... XtX =
Main idea:

SCV(Xi) ≤
ε2/4

t ⇒ SCV(X)  <  ε2/4≈

each term Ο(t /ε2) samples   ⇒ Ο(t2/ε2) total

Analyzing SCV is better



6. More…

a) proof of Dyer-Frieze

b) independent sets revisited

c) warm starts

Outline



1

2

4
Hamiltonian

0



Hamiltonian – many possibilities

0

1

2

(hardcore lattice gas model)



What would be a natural hamiltonian 
for planar graphs?



What would be a natural hamiltonian 
for planar graphs?

H(G) = number of edges

natural MC

λ/(1+λ)

1/(1+λ) try G - {u,v}

try G + {u,v}

pick u,v uniformly at random



natural MC

λ/(1+λ)

1/(1+λ) try G - {u,v}

try G + {u,v}

pick u,v uniformly at random

u
v

u

v

λ/(1+λ)
n(n-1)/2

1/(1+λ)
n(n-1)/2G G’



u
v

u

v

λ/(1+λ)
n(n-1)/2

1/(1+λ)
n(n-1)/2

π(G) ∝ λnumber of edges

satisfies the detailed balance condition

π(G) P(G,G’)  =  π(G’) P(G’,G)

G G’

(λ = exp(-β))



6. More…

a) proof of Dyer-Frieze

b) independent sets revisited

c) warm starts

Outline



Mixing time:
τmix =  smallest t such that 

| μt - π |TV ≤ 1/e

Relaxation time: 
τrel =  1/(1-λ2)

τrel ≤ τmix ≤ τrel ln (1/πmin)

Θ(n ln n)

Θ(n)

(n=3)

(discrepancy may be substantially bigger for, e.g., matchings)



Mixing time:
τmix =  smallest t such that 

| μt - π |TV ≤ 1/e

Relaxation time: 
τrel =  1/(1-λ2)

Estimating π(S)

1 if X∈ S
0 otherwise

Y= {
X∼π

E[Y]=π(S) ...

X1
X2

X3

Xs

METHOD 1
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METHOD 1

X1 X2 X3
... Xs

METHOD 2
(Gillman’98, Kahale’96, ...)



Mixing time:
τmix =  smallest t such that 

| μt - π |TV ≤ 1/e

Relaxation time: 
τrel =  1/(1-λ2)

Further speed-up

X1 X2 X3
... Xs

|μt - π |TV ≤ exp(-t/τrel) Varπ(μ0/π)

(∑ π(x)(μ0(x)/π(x)-1)2)1/2

small ⇒ called warm start

METHOD 2
(Gillman’98, Kahale’96, ...)



Mixing time:
τmix =  smallest t such that 

| μt - π |TV ≤ 1/e

Relaxation time: 
τrel =  1/(1-λ2)

Further speed-up

X1 X2 X3
... Xs

METHOD 2
(Gillman’98, Kahale’96, ...)

|μt - π |TV ≤ exp(-t/τrel) Varπ(μ0/π)

(∑ π(x)(μ0(x)/π(x)-1)2)1/2

small ⇒ called warm start

sample at β can be used as a 
warm start for β’

⇔
cooling schedule can step 
from β’ to β



sample at β can be used as a 
warm start for β’

⇔
cooling schedule can step 
from β’ to β

β0 β1 β2 β3 βm

....

= “well mixed” states

m=O( (ln n)(ln A) )



β0 β1 β2 β3 βm

....

= “well mixed” states

Xs

X1 X2 X3
... Xs

METHOD 2

run the our cooling-schedule
algorithm with METHOD 2
using “well mixed” states
as starting points



β0 β1 βk

Output of our algorithm: k=O*( (ln A)1/2 )

small augmentation (so that we can use 
sample from current β as a warm start at next)

still O*( (ln A)1/2 )
β0 β1 β2 β3 βm

....

Use analogue of Frieze-Dyer for independent samples
from vector variables with slightly dependent coordinates.  



if we have sampler oracles for μβ
then we can get adaptive schedule

of length t=O* (  (ln A)1/2 )

independent sets       O*(n2)
(using Vigoda’01, Dyer-Greenhill’01)

matchings O*(n2m)
(using Jerrum, Sinclair’89)

spin systems: 
Ising model             O*(n2) for β<βC

(using Marinelli, Olivieri’95)
k-colorings             O*(n2) for k>2Δ

(using Jerrum’95)


