
CS 282, Handout 1, Sep 6, 2007
Instructor: Daniel Štefankovič, CSB 620, e-mail: stefanko@cs.rochester.edu

www.cs.rochester.edu/~stefanko/Teaching/07CS282

General instructions:

• You will receive email saying which parts you need to solve (based on the results of the 0-th quiz).

• The solutions need to be typeset on a computer, using a program which allows you to use mathe-
matical notation (open office, tex/latex, word, etc are OK, plain text file is NOT OK).

• Turn in 2 print-outs (one for the instructor, one for the grader).

• The exercises are from your MTH 150 book (Discrete Mathematics and Its Applications, Kenneth
H. Rosen, 4th Edition), part C (294-295), part A (90-91), part I (200-201).

1 PART C (basic counting)

Solve the following problems in part C: 12, 15, 16(a,b,d), 21, 22, 27, 28, 37, 39.

For part “C” the your goal should be to get the results right. The following solved exercises may give
you an idea on how much you should write.

14) How many solutions are there to the equation x1 + x2 + x3 + x4 = 17, where x1, x2, x3, x4 are
nonnegative integers.

There is a 1-1 correspondence between the solutions and reorderings of 17 ones and 3 zeros (x1 is the
number of ones before the first zero, x2 the number of ones between the first and the second zero, x3 the
number of ones between the second and the third zero, and x4 is the number of ones after the third zero).
Hence the answer is (

20
3

)
= 1140.

�

16c) How many solutions are there to the equation x1+x2+x3+x4+x5+x6 = 29, where x1, x2, x3, x4, x5, x6

are nonnegative integers such that x1 ≤ 5.

If x1 is fixed then the number of solutions for the other variables is(
29 − x1 + 4

4

)
,

since as in 14), the solutions are in 1-1 correspondence with reorderings of 29 − x1 ones and 4 zeros.
The possible values for x1 are 0, 1, 2, 3, 4, 5 and hence the answer is(

33
4

)
+

(
32
4

)
+

(
31
4

)
+

(
30
4

)
+

(
29
4

)
+

(
28
4

)
= 179976.

�

26) How many different strings can be made from the letters in MISSISSIPPI, using all the letters?

We have one M , four I, four S, and two P .(
11

1, 4, 4, 2

)
=

11!
1! 4! 4! 2!

= 34650.

�
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2 Part A (asymptotic notation)

Solve the following problems in part A (excluding the parts solved below):
1, 2, 6, 7, 13, 14, 16, 25, 37, 38, 40.

For part “A” your goal should be to write a completely formal proof, delving into the definitions. The
following solved exercises may give you an idea on how much detail is expected. Do NOT use limits (the
goal here is to practice “bare-hand” technique).

The following definition of O notation should be used (note that this one is from the DPV book and
coincides with the Discrete Mathematics book definition for functions whose values are positive).

Definition 2.1 Let f, g : N → R
+ (i.e., f maps natural numbers N = {1, 2, . . . } to positive reals). We say

f(x) = O(g(x)) if there exists C ∈ R
+ such that such that

(∀x ∈ N) f(x) ≤ Cg(x). (1)

The following definition of Θ notation is used.

Definition 2.2 Let f, g : N → R
+. We say f(x) = Θ(g(x)) if there exist C1, C2 ∈ R

+ such that

(∀x ∈ N)C1g(x) ≤ f(x) ≤ C2g(x). (2)

1a) The function f(x) = 10 satisfies f(x) = O(x).

We will show that for C = 12, f(x) = 10, and g(x) = x the condition (1) is satisfied. Indeed, for all
x ∈ N we have 10 < 12x. �

2e) The function f(x) = 2x does NOT satisfy f(x) = O(x2).

We will use the following fact
(∀x ≥ 0) 2x ≥ x. (3)

Suppose that f(x) = O(x2), i.e., there exists C such that the condition (1) is satisfied (with f(x) = 2x

and g(x) = x2). Thus we have
(∀x ∈ N) 2x ≤ Cx2. (4)

Using (3) we obtain for all x ≥ 0

2x = 2x/32x/32x/3 ≥ x2

9
2x/3. (5)

Combining (5) and (4) we obtain
(∀x ∈ N) 2x/3 ≤ 9C. (6)

Clearly (6) is false for x > 3 log2(9C), a contradiction. Thus our assumption that f(x) = O(x2) is incorrect.
Hence f(x) �= O(x2). �

5) Show (x2 + 1)/(x + 1) = O(x).

For x ≥ 1 we have
x2 + 1 ≤ x2 + x. (7)

Dividing both sides of (7) by x + 1 (which is positive for x ≥ 1) we obtain

x2 + 1
x + 1

≤ x,
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for x ≥ 1. Hence (1) is satisfied with n0 = 1 and C = 1. �

36) Does f(x) = O(g(x)) imply 2f(x) = O(2g(x))?

NO. For example take f(x) = 2x and g(x) = x. Then f(x) = O(g(x)) (with C = 2), but there exists no
C ′ such that for all x ∈ N

22x ≤ C ′ · 2x,

since this would imply that for all x ∈ N we have 2x ≤ C ′. �

3 Part I (induction)

Solve the following problems from part I: 6, 13, 18, 21, 22, 34, 39.

For part “I” the your goal should be follow the idea of inductive proof. The following solved exercises
may give you an idea on you should structure your proofs.

7) Using mathematical induction show

(∀n ∈ N)12 + 22 + · · · + n2 = n(n + 1)(2n + 1)/6. (8)

BASE CASE: For n = 1 the left-hand side is 1 and the right-hand side is 1.

INDUCTION STEP: Suppose we showed the claim for n = k, i.e., we showed

12 + 22 + · · · + k2 = k(k + 1)(2k + 1)/6. (9)

Now we need to show the claim for n = k + 1, i.e.,

12 + 22 + · · · + k2 + (k + 1)2 = (k + 1)(k + 2)(2k + 3)/6. (10)

Using (9) we obtain

12 + 22 + · · · + k2 + (k + 1)2 = k(k + 1)(2k + 1)/6 + (k + 1)2 =

(2k3 + 9k2 + 13k + 6)/6 = (k + 1)(k + 2)(2k + 3)/6.
(11)

We showed that for every k (9) implies (10). Thus (8) follows by mathematical induction. �

20) Using mathematical induction show:

(∀n ∈ N) 3 | (n3 + 2n). (12)

BASE CASE: For n = 1 the right-hand side is 3, which is divisible by 3.

INDUCTION STEP: Suppose we showed the claim for n = k, i.e., we showed

3 | (k3 + 2k). (13)

This means that there exists an integer C such that

k3 + 2k = 3C. (14)
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We have

((k + 1)3 + 2(k + 1)) = k3 + 3k2 + 3k + 1 + 2k + 2 = (k3 + 2k) + 3k2 + 3k + 3 = 3(C + k2 + k + 3). (15)

Note that C ′ = C+k2+k+3 is an integer and ((k+1)3+2(k+1)) = 3C ′. Thus 3 divides ((k+1)3+2(k+1))
and the claim is true for n = k + 1, i.e.,

3 | ((k + 1)3 + 2(k + 1)). (16)

We showed that for every k (13) implies (16). Thus (12) follows by mathematical induction. �
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