
CSC172 LAB

GRAPH PRACTICE

1 Introduction
The labs in CSC172 will follow a pair programming paradigm. Every student is encouraged (but not
strictly required) to have a lab partner. Labs will typically have an even number of components. The
two partners in a pair programming environment take turns at the keyboard. This paradigm facilitates
code improvement through collaborative efforts, and exercises the programmers cognitive ability to
understand and discuss concepts fundamental to computer programming. The use of pair programming
is optional in CSC172. It is not a requirement. You can learn more about the pair programming
paradigm, its history, methods, practical benefits, philosophical underpinnings, and scientific validation
at http://en.wikipedia.org/wiki/Pair_programming .

Every student must hand in his own work, but every student must list the name of the lab partner (if
any) on all labs.

This lab has six parts. You and your partner(s) should switch off typing each part, as explained by your
lab TA. As one person types the lab, the other should be watching over the code and offering
suggestions. Each part should be in addition to the previous parts, so do not erase any previous work
when you switch.

The textbook should present examples of the code necessary to complete this lab. However,
collaboration is allowed. You and your lab partner may discuss the lab with other pairs in the lab. It is
acceptable to write code on the white board for the benefit of other lab pairs, but you are not allowed to
electronically copy and/or transfer files between groups.

2 Graph Practice (as opposed to “Graph Theory”)
In this lab, you will implement a basic graph ADT using the adjacency matrix data

structure. We will use integers to identify the nodes in a graph. In order to distinguish between
directed and undirected graphs, we will use a boolean value set at construction time.

1. Begin this lab by defining the basic skeleton of the graph ADT. Implement the constructors for
the Graph and Edge classes and the basic access methods (directed, V, E, and edge).

public class Graph{

 private int Vcnt, Ecnt; // number of verticies and edges

 boolean digraph ; // false for undirected graphs

 private boolean adj[][];

 public Graph(int numVerticies, boolean isDirgraph)

 public boolean directed()

 public int V() // return number of verticies

 public int E() // return number of edges

 public void insert(Edge e)

 public void delete(Edge e)

 public boolean edge(int node1, int node2) //are they connected?

 public AdjList getAdjList(int vertex)

}

//of course, we need an edge class

class Edge {

int v, w; // and edge from v to w

public Edge(int v, int w)

}

2. Implement the insert(Edge e) method. This would be nearly trivial if it were not for the
digraph boolean. You need different settings based on the state of this variable. You also need
to keep track of the edge count in this method. The method should have no effect if the edge
already exists.

3. Implement the delete(Edge e) method. This would be nearly trivial if it were not for the
digraph boolean. You need different settings based on the state of this variable. You also need
to keep track of the edge count in this method. The method should have no effect if the edge
does not exists.

4. The trickiest part is the getAdjList method which returns an iterator over the connections for
any given vertex. As an exercise we will “roll our own” iterator. The key functionality of any
iterator is to start us up, to end us, and to provide us with a “getnext” capability. Let's use the
basic skeleton:

interface AdjList {

int begin()

int next()

boolean end()

}

What we want is the ability to implement this interface in a class so that we can write the Graph
method as:

public AdjList getAdjList(int vertex) {

return new AdjArray(vertex);

}

So, we need to make a new private class inside the Graph class that gives us access to the
“rows” of the adjacency matrix and processes them properly. The trickiest part is the “next”
method. Use and index “i” to scan past false entries in row v of the adjacency matrix.
Implement this private helper class as follows:

private class AdjArray implements AdjList {

private int v; // what vertex we are interested in

private int i; // so we can keep track of where

AdjArray(int v) {

// write the code for the constructors

// save the value of the vertex passed in

// start the “i” counter at negative one

}

public int next() { // perhaps the trickiest method

// use a for loop to advance the value of “i”

// “for (i++;i < V();i++)”

// and search the appropriate row return the index

// of the next true value found

// “if (edge(v,i) == true) return i;”

 // if the loop completes without finding anything return -1

}

 public int beg() {

// reset “i” back to negative one

// return a the value of a call to “next”

 }

 public boolen end() {

// if “i” is less than the number of vertices return false

 }

}

5. If you implemented the iterator properly, then you should be able to include the following static
method and have it work to print out the representation of the graph:

static void show (Graph G) {

for (int s = 0; s < G.V() ; s++) {

System.out.print(s + “: “);

AdjList A = G.getAdjList(s) ;

 for (int t = A.beg(); !A.end(); t = A.next()) {

System.out.print(t + “ “);

}

System.out.println();

 }

}

6. Write a main text method to build two graphs and print them out using the show method above
(fix any bugs due to typos, of course). Yes, you have to use the method above, this lab is about
graphs, but it is also about iterators. Show your code working for the graphs found in figure
9.10 (directed) and figure 9.62 (undirected) of the Weiss text book.

3 Hand In
Hand in the source code from this lab at the appropriate location on the blackboard system at

my.rochester.edu. You should hand in a single compressed/archived (i.e. “zipped”) file that contains
the following.) You will need to include the images of your plotted results.

1. A README that includes your contact information, your partner's name, a brief explanation of
the lab (A one paragraph synopsis. Include information identifying what class and lab number
your files represent.).

2. Several JAVA source code files representing the work accomplished for this lab. All source
code files should contain author and partner identification in the comments at the top of the file.
It is expected that you will have a file for the test program class.

3. A plain text file named OUTPUT that includes author information at the beginning and shows
the compile and run steps of your code. The best way to generate this file is to cut and paste
from the command line.

4 Grading
172/grading.html

Each section (1-6) accounts for 15% of the lab grade (total 90%)

(README file counts for 10%)

	1 Introduction
	2 Graph Practice (as opposed to “Graph Theory”)
	3 Hand In
	4 Grading

