

Garrett Hall

CSC 173

Prolog, Week 3-4

Overview
 I created a compact scanner, parser, and evaluator that can calculate basic arithmetic

expressions. First it prompts the user to type an expression

parser.pl

-? test.

Input:

Then it outputs the result of each step of the evaluation

?- test.

Input: 10 * (3 + 4) - 3 / 2.

Scan: [10, *, (, 3, +, 4,), -, 3, /, 2]

Parse: e(e(10, *, e(3, +, 4)), -, e(3, /, 2))

Eval: 68.5

I’ll discuss each of these in order.

Scanner
The scanner can be written in 4 rules. The first simply grabs input and begins the scanning.

scan(S) :- get(C), scan_token(S, C).

The scan_token predicate simply accumulates tokens in the first argument and terminates when

it finds a period. name(T,Word) converts words (list of integers) into tokens.

scan_token([T|Rest], C) :- scan_word(Word, C, Next),

 (period(Next), name(T,Word), Rest = [];

 name(T,Word), scan_token(Rest, Next)).

Each of the tokens is built using scan_word. The only types it cares about are whitespaces,

operators, and numbers. Scanning numbers requires a separate predicate (not shown),

corresponding to a new DFA state for accepting digits. Next is the lookahead character.

scan_word(Word, C, Next) :-

 whitespace(C), get(Next), scan_word(Word, Next, _);

 operator(C), get(Next), Word = [C];

 digit(C), scan_number(Word, C, Next).

Aside from juggling lookahead characters and lack of decent character and string support,

scanning in Prolog is not too difficult. The logic-based nature of Prolog implicitly creates fail

states, making DFA construction somewhat easier.

Parser
Thanks to Prolog’s built-in --> operator, parsing can be implemented quite elegantly. My parser

is only 12 one-line rules:

parse(In, Out) :- phrase(expr(Out), In).

expr(e(T,A,E)) --> term(T), add_op(A), expr(E).

expr(T) --> term(T).

term(e(F,M,T)) --> factor(F), mult_op(M), term(T).

term(F) --> factor(F).

factor(E) --> ['('], expr(E), [')'].

factor(Num,[Num|X],X) :- number(Num).

factor(e(0,-,F)) --> [-], factor(F).

add_op(+) --> [+].

add_op(-) --> [-].

mult_op(*) --> [*].

mult_op('/') --> ['/'].

This is Scott’s grammar verbatim, only the left-recursion has been removed so that

expr expr add_op term

expr term

becomes

expr term add_op expr

expr term

The parse tree being built is quite simple, with only e() used to indicate a tree node. So in this

parse tree (taken from first example)

e(e(10, *, e(3, +, 4)), -, e(3, /, 2))

the (3 + 4) from the input has become the function e(3, +, 4), indicating a higher evaluation

priority. The simplicity pays off when the tree is passed to the evaluator.

Evaluator
The evaluator uses only 3 predicates.

At the very first node the left and right sides are recursively evaluated to get Xv and Yv, which

are themselves evaluated:

eval(e(X,Op,Y), V) :-

 eval(X,Xv),

 eval(Y,Yv),

 eval(e(Xv,Op,Yv), V).

If the left and right sides are numbers then they can be evaluated immediately:

eval(e(X,Op,Y), V) :-

 number(X), number(Y),

 (Op = +, V is X + Y;

 Op = -, V is X - Y;

 Op = *, V is X * Y;

 Op = '/', V is X / Y).

Lastly, if asked to evaluate a number, the number is just returned:

eval(X, V) :- number(X), X = V.

e

+3 4

e

*10

e

/3 2

e

+

