Natural Language to Predicate Calculus
CSC 173 - Logic Module
Julian E. Herwitz

The goal of this assignment was to create a program in Prolog to convert natural
English language into first order predicate calculus. This was successfully
accomplished in two stages - by first creating a parser to convert the input sentence
into a parse tree and then creating a translator to convert the parse tree into first-
order logic. The parser is used to check sentence grammatical, syntactic, and lexical
accuracy for badly formed sentences. While doing this, a parse tree is created. This
parse tree is then sent to a translator, which uses specified rules to infer semantics,
and from these interpretations creates predicate calculus.

Goal

The overarching goal of this assignment was to create a program, written in
Prolog, to convert natural English language into first-order predicate calculus. This
program was created using two components, a parser and a translator.

The parser can be seen abstractly as a black-box that takes an input sentence
(in English) and returns a parse tree of the sentence. The goal of the parsing is to
check the parameter sentence conforms to the language’s grammatical rules and the
program’s lexicon. This parsing process doesn’t necessarily factor into the
functionality of the sentence-translation engine, but is implemented to simplify the
translation process.

After parsing, the synthesized parse tree is sent to a translator. This
translator recurses through the parse tree, using determiners, quantifiers, and other
key words to quantify and connect statements, and returns the translated first order
logic.

Using the parser and translator, the natural language to first-order predicate
calculus converter was successfully created.

Methods

Before I describe the implementation of my program, it is first important to
discuss the overarching abstractions the program is working towards.
When something is parsed, it is parsed according to a “tree” structure. This
structure defines how to categorize words according to the defined grammar. The
interior nodes of the tree represent different (and, as the nodes move lower, more
specific) parts of speech, while the leaf nodes represent terminal symbols, or words
in the language lexicon. An example of a parse tree is as follows:

verb_phrase

deternmmner 10un

Clocksin parse tree!

Although this is a simplified version of the parse tree used for the program
(which will be depicted below), the structure remains the same. The sentence is
broken down into different parts of speech, which can each in turn be broken

1 Clocksin. Using Prolog Grammar Rules

further down. This continues until the actual word is reached, at which point the
parser may recurse back up the tree and combine terms to complete the higher-
order parts of speech.

The second fundamental concept to the program is the formation of first-
order predicate calculus. First-order predicate calculus is a formalized logic system
that uses quantifiers and propositional logic to represent and determine a wide
range of logical situations. To convert something into predicate calculus, one must
attempt to interpret the semantics of the sentence, and create relationships and
quantifications using this interpretation. This is intuitive for humans, butis a
challenge to automate computationally. It can be completed, however, by searching
for certain words, which may be used to effectively determine semantics. For
example, words such as “all” or “some,” relate to existential and universal
quantification. To-be verbs usually relate to implication, and adjectives create an
“and” relationship between two predicates.

My program works by implementing these two concepts together to create
an effective language conversion pipeline. Specifically, the parse tree for my
program can be found in Appendix A.

The differences between this tree and the simplified tree are analyzed and
interpreted in the subsequent discussion section. The translator uses the previously
defined interpretation of certain English words to effectively synthesize a first-order
logical statement from the above parse tree.

My program’s parsing is done entirely recursively. The parse tree interior
nodes are synthesized into rules and leaf nodes relate to hand-instrumented atoms.
The parser recurses through the sentence, naturally creating a parse tree from the
recursive stack. If a grammatical, syntactic, or lexical error is encountered, the
parser returns with a false result and the program is terminated. This is important,
as one of the major goals of the parser was to handle potential sentence errors. This
aspect helps streamline the translator, as parse trees sent to the translator are free
of errors so error handling does not need to be considered.

The translator’s conversion is executed (as is everything in Prolog)
recursively. The translator recurses through the parse tree, searching for certain
words which may represent logical meaning. For example, the word “some” relates
to an existential quantification, and according the program will implement an
“exists” symbol. Adjectives elicit an “and” operator. Certain verbs relate to
implication. Since the translation is executed recursively, it is simple to enter nested
logical statements, and continue writing the original statement after the program
has recursed back up to the original level. Although the assignment recommended
implementing the parser as a subroutine of the translator, I decided to create them
as separate entities, and call them simultaneously. The reasoning for this was based
in modularity - [wanted to keep the different program components as separate and,
in effect, modular as possible.

The following is the program’s recognized lexicon. This is very easily
extendable to a wide range of nouns, determiners, quantifiers, verbs, and adjectives.

Noun Verb Determiner Relative Clause
apple conscripts the that
apples conscript an whom
boy likes a who
boys like which
girl runs

girls run Adjective

government eats evil

governments eat divine

watermelon contains pacifist

watermelons contain

person is

people are Quantifier

flavor some

flavors all

Program lexicon. Rows bear no relation. Words are case sensitive.

Results

The conversion program was successfully created and was broadly tested.
Test results showed that the program worked as expected to arbitrary sentence
complexity. Two of these tests are as follows:

Test 1:

Parameter sentence “All governments that conscript some pacifist people are evil.”
?7- sentence(_,Tree,[all,governments that,conscript,some pacifist,people ,are evil],[]), s(Tree,X).

Parse Tree:

Tree = sentence(noun_phrase(determiner(all), noun(governments), rel_clause(rel(that),
verb_phrase(verb(conscript), noun_phrase(determiner(some), adjective(pacifist), noun(people))))),
verb_phrase(be_verb(are), adjective(evil)))

First-Order logical representation:
X = all(x23, governments(x23)&conscript(x23, exists(x24, people(x24)&pacifist(x24)))=>evil(x23))

Test 2:

Parameter sentence “All people like all apples that contain some divine flavor.”
?7- sentence(_,Tree,[all,people like,all apples that,contain,some divine,flavor],[]), s(Tree,X).

Parse Tree:

Tree = sentence(noun_phrase(determiner(all), noun(people)), verb_phrase(verb(like),
noun_phrase(determiner(all), noun(apples), rel_clause(rel(that), verb_phrase(verb(contain),
noun_phrase(determiner(some), adjective(divine), noun(flavor)))))))

First-Order logical representation:

X = all(x36, people(x36)=>like(x36, all(x37, apples(x37)&contain(x37, exists(x38,
flavor(x38)&divine(x38))))))

The only unsuccessful test was of the semantics of relative clauses. Certain
sentences sent through the parser involving determination between the usage of
which and that, which should be contradicted as a false sentence, are not
differentiated. This error, however, has no significant bearing on translatability.
Another important note is that the predicate first-order logic functions do not
change in my implementation as they do in the assignment. I decided to keep the
original names (e.g. people(x2) instead of person(x2)) to maintain understanding of
where the logic was originating from.

For a complete trace of test one, see Appendix B.

Discussion

This project contained multiple difficult technical problems relevant for
discussion. For the parser, the most significant of these involved differentiating
types of phrases from each other. In the Clocksin parse tree, only one type of noun
phrase exists, containing a single determiner followed by a single noun. To make a
more flexible and powerful parser, a more diverse interpretation of phrases is
required. I extended this narrow interpretation by creating multiple definitions for
different parts of speech, allowing the program greater flexibility in searching for a
relevant rule to apply. This was implemented by duplicating rules and modifying
each to represent another permutation of the phrase. For example, I implemented
five separate noun phrases. As can be seen in the parse tree above, each individual
phrase contains different component parts of speech. One contains only a
determiner followed by a noun, while another contains a determiner, adjective,
noun, and relative clause (which itself has multiple implementations). In this way,
the parser can effectively parse sentences with both types of noun phrases.

Another difficulty accounted for while parsing was the continuity and
consistency of number throughout the sentences. An important consideration, not
only do syntactic and lexical accuracy factor into a sentence’s correctness, but also
the consistency of number throughout. For example, “the boys run” is a correct
sentence while “the boys runs” is not. This problem is handled by implementation of
Clocksin’s analogous solution - the passing through recursion of a plurality variable.
Each rule takes and returns a parameter that displays the current object number. If
the parameter number does not match the number located in the word atom, the
parsing will fail because of a badly formed sentence.

There are certain quantifications, however, which are impossible to parse or
translate - they are inherently ambiguous. “Every boy loves a girl” is an example of
this. This sentence is ambiguous, does every boy love the same girl or does each boy
love a different girl? There is no definitive way to computationally determine the
answer.

A major problem that had to be overcome with the Prolog implementation
involved the way Prolog deals with the remaining sentence after recursing through
the phrase rule. By default, if not explicitly handled, Prolog will not return the
remainder of the sentence to above functions. This effectively makes the rest of the

sentence inaccessible garbage. In order to maintain this remainder, the
implementation of the “-->” operator was required. This operator makes sure the
remaining sentence isn’t consumed; the function returns the remainder of the
sentence for further use.

References
Karl L. Stratos (a.k.a. Jang Sun Lee), October 2010.

http://www.cs.rochester.edu/u/brown/173/Exercises/08 Exer/NIL.toFOL/LogicTrans.html,
http://www.cs.rochester.edu/u/brown/173/Exercises/08 Exer/NLtoFOL/comment2.html

Clocksin. Using Prolog Grammar Rules. 2003.

Appendix A
Parse tree for parser.

Noun Phrase

Noun

Noun Phrase

N/

Deferminer —~~ Noun ~ Determiner

Noun Phrase

Adjective

\

Noun Phrase

AN

Noun Determiner Adjectve Noun Relative
Clause

Clause

Relative Clause Reative Clause
glemive Relative Verb
- Clause
(Word)

(Word

\

elerminer Noun Relative Be Verb Adjective

Verb Phrase

/______-—— Sentence_________________

Verb Phrase

Verb

T

Verb Phrase

Verb

Appendix B
Trace of conversion of “All governments that conscript some pacifist people are
evil.”

?- trace,
sentence(_,Tree,[all,governments,that,conscript,some,pacifist,people,are,evil],[]
, 8(Tree,X).

Call: (8) sentence(_G257, _GR58, [all, governments, that, conscript, some,
pacifist, people, are|...], []) ? creep

Call: (9) noun_phrase(_GR57, _G445, [all, governments, that, conscript, some,
pacifist, people, are|...], _L211) ? creep

Call: (10) noun(_G&587, _G448, [all, governments, that, conscript, some, pacifist,
people, are|...], _LR11) ? creep

Call: (11) is_noun(all, _G287) ? creep

Fail: (11) is_noun(all, _G287) ? creep

Fail: (10) noun(_G&57, _G448, [all, governments, that, conscript, some, pacifist,
people, are|...], _LR11) ? creep

Redo: (9) noun_phrase(_GR57, _G445, [all, governments, that, conscript, some,
pacifist, people, are|...], _L211) ? creep

Call: (10) determiner(_G257, _G448, [all, governments, that, conscript, some,
pacifist, people, are|...], _L233) ? creep

Call: (11) is_determiner(all, _GR257) ? creep

Exit: (11) is_determiner(all, plural) ? creep

Call: (11) _L233=[governments, that, conscript, some, pacifist, people, are, evil]
? creep

Exit: (11) [governments, that, conscript, some, pacifist, people, are,
evil]=[governments, that, conscript, some, pacifist, people, are, evil] ? creep

Exit: (10) determiner(plural, determiner(all), [all, governments, that,
conscript, some, pacifist, people, are|...], [Sovernments, that, conscript, some,
pacifist, people, are, evil]) ? creep

Call: (10) noun(plural, _G449, [governments, that, conscript, some, pacifist,
people, are, evil], _L211) ? creep

Call: (11) is_noun(governments, plural) ? creep

Exit: (11) is_noun(governments, plural) ? creep

Call: (11) _L211=[that, conscript, some, pacifist, people, are, evil] ? creep

Exit: (11) [that, conscript, some, pacifist, people, are, evil]=[that, conscript,
some, pacifist, people, are, evil] ? creep

Exit: (10) noun(plural, noun(governments), [Sovernments, that, conscript,
some, pacifist, people, are, evil], [that, conscript, some, pacifist, people, are, evil])
? creep

Exit: (9) noun_phrase(plural, noun_phrase(determiner(all),
noun(governments)), [all, governments, that, conscript, some, pacifist, people,
are|...], [that, conscript, some, pacifist, people, are, evil]) ? creep

Call: (9) verb_phrase(plural, _G446, [that, conscript, some, pacifist, people, are,
evil], []) ? creep

Call: (10) verb(plural, _G4585, [that, conscript, some, pacifist, people, are, evil],
[? creep

Call: (11) is_verb(that, plural) ? creep

Fail: (11) is_verb(that, plural) ? creep

Fail: (10) verb(plural, _G4585, [that, conscript, some, pacifist, people, are, evil],
[? creep

Redo: (9) verb_phrase(plural, _G446, [that, conscript, some, pacifist, people,
are, evil], []) ? creep

Call: (10) verb(plural, _G4585, [that, conscript, some, pacifist, people, are, evil],
_L255) ? creep

Call: (11) is_verb(that, plural) ? creep

Fail: (11) is_verb(that, plural) ? creep

Fail: (10) verb(plural, _G4585, [that, conscript, some, pacifist, people, are, evil],
_L258) ? creep

Redo: (9) verb_phrase(plural, _G446, [that, conscript, some, pacifist, people,
are, evil], []) ? creep

Call: (10) be_verb(plural, _G455, [that, conscript, some, pacifist, people, are,
evil], _LRB5) ? creep

Call: (11) is_be_wverb(that, plural) ¥ creep

Fail: (11) is_be_verb(that, plural) ¥ creep

Fail: (10) be_verb(plural, _G455, [that, conscript, some, pacifist, people, are,
evil], _L.RB5B) ? creep

Fail: (9) verb_phrase(plural, _G446, [that, conscript, some, pacifist, people, are,
evil], []) ? creep

Redo: (9) noun_phrase(_GR57, _G445, [all, governments, that, conscript, some,
pacifist, people, are|...], _L211) ? creep

Call: (10) determiner(_G257, _G448, [all, governments, that, conscript, some,
pacifist, people, are|...], _L234) ? creep

Call: (11) is_determiner(all, _GR257) ? creep

Exit: (11) is_determiner(all, plural) ? creep

Call: (11) _L234=[governments, that, conscript, some, pacifist, people, are, evil]
? creep

Exit: (11) [governments, that, conscript, some, pacifist, people, are,
evil]=[governments, that, conscript, some, pacifist, people, are, evil] ? creep

Exit: (10) determiner(plural, determiner(all), [all, governments, that,
conscript, some, pacifist, people, are|...], [Sovernments, that, conscript, some,
pacifist, people, are, evil]) ? creep

Call: (10) adjective(plural, _G449, [governments, that, conscript, some, pacifist,
people, are, evil], _L235) ? creep

Call: (11) is_adjective(governments, plural) ? creep

Fail: (11) is_adjective(governments, plural) ? creep

Fail: (10) adjective(plural, _G449, [governments, that, conscript, some, pacifist,
people, are, evil], _L235) ? creep

Redo: (9) noun_phrase(_GR57, _G445, [all, governments, that, conscript, some,
pacifist, people, are|...], _L211) ? creep

Call: (10) determiner(_G257, _G448, [all, governments, that, conscript, some,
pacifist, people, are|...], _L234) ? creep

Call: (11) is_determiner(all, _G257) ? creep

Exit: (11) is_determiner(all, plural) ? creep

Call: (11) _L234=[governments, that, conscript, some, pacifist, people, are, evil]
? creep

Exit: (11) [governments, that, conscript, some, pacifist, people, are,
evil]=[governments, that, conscript, some, pacifist, people, are, evil] ? creep

Exit: (10) determiner(plural, determiner(all), [all, governments, that,
conscript, some, pacifist, people, are|...], [Sovernments, that, conscript, some,
pacifist, people, are, evil]) ? creep

Call: (10) noun(plural, _G449, [governments, that, conscript, some, pacifist,
people, are, evil], _L235) ? creep

Call: (11) is_noun(governments, plural) ? creep

Exit: (11) is_noun(governments, plural) ? creep

Call: (11) _L235=[that, conscript, some, pacifist, people, are, evil] ? creep

Exit: (11) [that, conscript, some, pacifist, people, are, evil]=[that, conscript,
some, pacifist, people, are, evil] ? creep

Exit: (10) noun(plural, noun(governments), [Sovernments, that, conscript,
some, pacifist, people, are, evil], [that, conscript, some, pacifist, people, are, evil])
? creep

Call: (10) rel_clause(plural, _G450, [that, conscript, some, pacifist, people, are,
evil], _LR11) ? creep

Call: (11) rel(plural, _G456, [that, conscript, some, pacifist, people, are, evil],
_L2B7) ? creep

Call: (1) is_rel(that, plural) ? creep

Exit: (1) is_rel(that, plural) ? creep

Call: (12) _L257=[conscript, some, pacifist, people, are, evil] ? creep

Exit: (12) [conscript, some, pacifist, people, are, evil]=[conscript, some, pacifist,
people, are, evil] ? creep

Exit: (11) rel(plural, rel(that), [that, conscript, some, pacifist, people, are, evil],
[conscript, some, pacifist, people, are, evil]) ? creep

Call: (11) verb_phrase(plural, _G45%7, [conscript, some, pacifist, people, are,
evil], _LR11) ? creep

Call: (12) verb(plural, _G461, [conscript, some, pacifist, people, are, evil],
_L211) ? creep

Call: (13) is_verb(conscript, plural) ? creep

Exit: (138) is_verb(conscript, plural) ? creep

Call: (13) _L211=[some, pacifist, people, are, evil] ? creep

Exit: (18) [some, pacifist, people, are, evil]=[some, pacifist, people, are, evil] ?
creep

Exit: (12) verb(plural, verb(conscript), [conscript, some, pacifist, people, are,
evil], [some, pacifist, people, are, evil]) ? creep

Exit: (11) verb_phrase(plural, verb_phrase(verb(conscript)), [conscript, some,
pacifist, people, are, evil], [some, pacifist, people, are, evil]) ? creep

Exit: (10) rel_clause(plural, rel_clause(rel(that),
verb_phrase(verb(conscript))), [that, conscript, some, pacifist, people, are, evil],
[some, pacifist, people, are, evil]) ? creep

Exit: (9) noun_phrase(plural, noun_phrase(determiner(all),
noun(governments), rel_clause(rel(that), verb_phrase(verb(conscript)))), [all,
governments, that, conscript, some, pacifist, people, are|...], [some, pacifist,
people, are, evil]) ? creep

Call: (9) verb_phrase(plural, _G446, [some, pacifist, people, are, evil], []) ?
creep

Call: (10) verb(plural, _G4685, [some, pacifist, people, are, evil], []) ? creep

Call: (11) is_verb(some, plural) ? creep

Fail: (11) is_verb(some, plural) ? creep

Fail: (10) verb(plural, _G465, [some, pacifist, people, are, evil], []) ? creep

Redo: (9) verb_phrase(plural, _G446, [some, pacifist, people, are, evil], []) ?
creep

Call: (10) verb(plural, _G4685, [some, pacifist, people, are, evil], _LR99) ? creep

Call: (11) is_verb(some, plural) ? creep

Fail: (11) is_verb(some, plural) ? creep

Fail: (10) verb(plural, _G4685, [some, pacifist, people, are, evil], _LR99) ¥ creep

Redo: (9) verb_phrase(plural, _G446, [some, pacifist, people, are, evil], []) ?
creep

Call: (10) be_verb(plural, _G465, [some, pacifist, people, are, evil], _LR99) ¥
creep

Call: (11) is_be_verb(some, plural) ? creep

Fail: (11) is_be_verb(some, plural) ? creep

Fail: (10) be_verb(plural, _G465, [some, pacifist, people, are, evil], _L.R99) ?
creep

Fail: (9) verb_phrase(plural, _G446, [some, pacifist, people, are, evil], []) ?
creep

Redo: (11) verb_phrase(plural, _G457, [conscript, some, pacifist, people, are,
evil], _LR11) ? creep

Call: (12) verb(plural, _G461, [conscript, some, pacifist, people, are, evil],
_L279) ? creep

Call: (13) is_verb(conscript, plural) ? creep

Exit: (138) is_verb(conscript, plural) ? creep

Call: (13) _L_279=[some, pacifist, people, are, evil] ? creep

Exit: (18) [some, pacifist, people, are, evil]=[some, pacifist, people, are, evil] ?
creep

Exit: (12) verb(plural, verb(conscript), [conscript, some, pacifist, people, are,
evil], [some, pacifist, people, are, evil]) ? creep

Call: (12) noun_phrase(_L295, _G462, [some, pacifist, people, are, evil], _L211)
? creep

Call: (13) noun(_L295, _G466, [some, pacifist, people, are, evil], _L211) ? creep

Call: (14) is_noun(some, _LR95) ? creep

Fail: (14) is_noun(some, _L.R95) ? creep

Fail: (13) noun(_L295, _G466, [some, pacifist, people, are, evil], _L211) ? creep

Redo: (12) noun_phrase(_L295, _G462, [some, pacifist, people, are, evil],
_L211) ? creep

Call: (13) determiner(_L295, _G466, [some, pacifist, people, are, evil], _L301) ?
creep

Call: (14) is_determiner(some, _L.R95) ? creep

Exit: (14) is_determiner(some, singular) ? creep

Call: (14) _L301=[pacifist, people, are, evil] ? creep

Exit: (14) [pacifist, people, are, evil]=[pacifist, people, are, evil] ? creep

Exit: (138) determiner(singular, determiner(some), [some, pacifist, people, are,
evil], [pacifist, people, are, evil]) ? creep

Call: (13) noun(singular, _G467, [pacifist, people, are, evil], _L211) ¥ creep

Call: (14) is_noun(pacifist, singular) ¥ creep

Fail: (14) is_noun(pacifist, singular) ¥ creep

Fail: (13) noun(singular, _G467, [pacifist, people, are, evil], _L211) ? creep

Redo: (14) is_determiner(some, _1.295) ? creep

Exit: (14) is_determiner(some, plural) ? creep

Call: (14) _L301=[pacifist, people, are, evil] ? creep

Exit: (14) [pacifist, people, are, evil]=[pacifist, people, are, evil] ? creep

Exit: (18) determiner(plural, determiner(some), [some, pacifist, people, are,
evil], [pacifist, people, are, evil]) ? creep

Call: (13) noun(plural, _G467, [pacifist, people, are, evil], _LR11) ? creep

Call: (14) is_noun(pacifist, plural) ? creep

Fail: (14) is_noun(pacifist, plural) ? creep

Fail: (13) noun(plural, _G467, [pacifist, people, are, evil], _LR11) ¥ creep

Redo: (12) noun_phrase(_L295, _G462, [some, pacifist, people, are, evil],
_L211) ? creep

Call: (13) determiner(_L295, _G466, [some, pacifist, people, are, evil], _L302) ?
creep

Call: (14) is_determiner(some, _L.295) ? creep

Exit: (14) is_determiner(some, singular) ¥ creep

Call: (14) _L302=[pacifist, people, are, evil] ? creep

Exit: (14) [pacifist, people, are, evil]=[pacifist, people, are, evil] ? creep

Exit: (138) determiner(singular, determiner(some), [some, pacifist, people, are,
evil], [pacifist, people, are, evil]) ? creep

Call: (13) adjective(singular, _G467, [pacifist, people, are, evil], _L303) ? creep

Call: (14) is_adjective(pacifist, singular) ? creep

Exit: (14) is_adjective(pacifist, singular) ? creep

Call: (14) _L303=[people, are, evil] ? creep

Exit: (14) [people, are, evil]=[people, are, evil] ? creep

Exit: (18) adjective(singular, adjective(pacifist), [pacifist, people, are, evil],
[people, are, evil]) ? creep

Call: (13) noun(singular, _G468, [people, are, evil], _L211) ? creep

Call: (14) is_noun(people, singular) ? creep

Fail: (14) is_noun(people, singular) ? creep

Fail: (13) noun(singular, _G468, [people, are, evil], _L211) ? creep

Redo: (14) is_determiner(some, _1L.295) ? creep

Exit: (14) is_determiner(some, plural) ? creep

Call: (14) _L302=[pacifist, people, are, evil] ? creep

Exit: (14) [pacifist, people, are, evil]=[pacifist, people, are, evil] ? creep

Exit: (18) determiner(plural, determiner(some), [some, pacifist, people, are,
evil], [pacifist, people, are, evil]) ? creep

Call: (13) adjective(plural, _G467, [pacifist, people, are, evil], _L303) ? creep

Call: (14) is_adjective(pacifist, plural) ? creep

Exit: (14) is_adjective(pacifist, plural) ? creep

Call: (14) _L303=[people, are, evil] ? creep

Exit: (14) [people, are, evil]=[people, are, evil] ? creep

Exit: (18) adjective(plural, adjective(pacifist), [pacifist, people, are, evil],
[people, are, evil]) ? creep

Call: (13) noun(plural, _G468, [people, are, evil], _LR11) ? creep

Call: (14) is_noun(people, plural) ? creep

Exit: (14) is_noun(people, plural) ? creep

Call: (14) _L211=[are, evil] ? creep

Exit: (14) [are, evil]=[are, evil] ? creep

Exit: (13) noun(plural, noun(people), [people, are, evil], [are, evil]) ? creep

Exit: (12) noun_phrase(plural, noun_phrase(determiner(some),
adjective(pacifist), noun(people)), [some, pacifist, people, are, evil], [are, evil]) ?
creep

Exit: (11) verb_phrase(plural, verb_phrase(verb(conscript),
noun_phrase(determiner(some), adjective(pacifist), noun(people))), [conscript,
some, pacifist, people, are, evil], [are, evil]) ? creep

Exit: (10) rel_clause(plural, rel_clause(rel(that), verb_phrase(verb(conscript),
noun_phrase(determiner(some), adjective(pacifist), noun(people)))), [that,
conscript, some, pacifist, people, are, evil], [are, evil]) ? creep

Exit: (9) noun_phrase(plural, noun_phrase(determiner(all),
noun(governments), rel_clause(rel(that), verb_phrase(verb(conscript),
noun_phrase(determiner(some), adjective(pacifist), noun(people))))), [all,
governments, that, conscript, some, pacifist, people, are|...], [are, evil]) ? creep

Call: (9) verb_phrase(plural, _G446, [are, evil], []) ? creep

Call: (10) verb(plural, _G476, [are, evil], []) ? creep

Call: (11) is_verb(are, plural) ¥ creep

Fail: (11) is_verb(are, plural) ¥ creep

Fail: (10) verb(plural, _G476, [are, evil], []) ? creep

Redo: (9) verb_phrase(plural, _G446, [are, evil], []) ? creep

Call: (10) verb(plural, _G476, [are, evil], _L325) ? creep

Call: (11) is_verb(are, plural) ? creep

Fail: (11) is_verb(are, plural) ¥ creep

Fail: (10) verb(plural, _G476, [are, evil], _L325) ? creep

Redo: (9) verb_phrase(plural, _G446, [are, evil], []) ? creep

Call: (10) be_verb(plural, _G476, [are, evil], _L325) ? creep

Call: (11) is_be_verb(are, plural) ? creep

Exit: (11) is_be_verb(are, plural) ? creep

Call: (11) _L325=[evil] ? creep

Exit: (11) [evil]=[evil] ? creep

Exit: (10) be_verb(plural, be_verb(are), [are, evil], [evil]) ? creep

Call: (10) adjective(plural, _G477, [evil], []) ©? creep

Call: (11) is_adjective(evil, plural) ? creep

Exit: (11) is_adjective(evil, plural) ? creep

Call: (11) [1=[] ? creep

Exit: (11) []=[] ? creep

Exit: (10) adjective(plural, adjective(evil), [evil], []) ©? creep

Exit: (9) verb_phrase(plural, verb_phrase(be_verb(are), adjective(evil)), [are,
evil], []) ? creep

Exit: (8) sentence(plural, sentence(noun_phrase(determiner(all),
noun(governments), rel_clause(rel(that), verb_phrase(verb(conscript),
noun_phrase(determiner(some), adjective(pacifist), noun(people))))),
verb_phrase(be_verb(are), adjective(evil))), [all, governments, that, conscript,
some, pacifist, people, are]|...], []) ? creep

Call: (8) s(sentence(noun_phrase(determiner(all), noun(governments),
rel_clause(rel(that), verb_phrase(verb(conscript),
noun_phrase(determiner(some), adjective(pacifist), noun(people))))),
verb_phrase(be_verb(are), adjective(evil))), _GR63) ? creep

Call: (9) gensym(x, _L323) ? creep

Call: (12) increment_key('$gs_x', _G484) ? creep

Exit: (12) increment_key('$gs_x', 42) ? creep

Exit: (9) gensym(x, x42) ? creep

Call: (9) np(x42, noun_phrase(determiner(all), noun(governments),
rel_clause(rel(that), verb_phrase(verb(conscript),

noun_phrase(determiner(some), adjective(pacifist), noun(people))))), L324) ?
creep

Call: (10) adj(x48, noun(governments), _1.346) ? creep

Call: (11) noun(governments)=..[adjective, _G489] ? creep

Fail: (11) noun(governments)=..[adjective, _G489] ? creep

Fail: (10) adj(x48, noun(governments), _1.346) ? creep

Redo: (9) np(x42, noun_phrase(determiner(all), noun(governments),
rel_clause(rel(that), verb_phrase(verb(conscript),
noun_phrase(determiner(some), adjective(pacifist), noun(people))))), L334) ?
creep

Call: (10) n(x48, noun(governments), _1.346) ? creep

Call: (11) noun(governments)=..[noun, _G489] ? creep

Exit: (11) noun(governments)=..[noun, governments] ? creep

Call: (11) _L346=..[governments, x42] ? creep

Exit: (11) governments(x42)=..[governments, x42] ? creep

Exit: (10) n(x42, noun(governments), governments(x42)) ? creep

Call: (10) re(x4R, rel_clause(rel(that), verb_phrase(verb(conscript),
noun_phrase(determiner(some), adjective(pacifist), noun(people)))), _L347) ?
creep

Call: (11) vp(x42, verb_phrase(verb(conscript),
noun_phrase(determiner(some), adjective(pacifist), noun(people))), _L347) ?
creep

Call: (12) gensym(x, _L387) ? creep

Call: (18) increment_key('$gs_x', _G501) ? creep

Exit: (15) increment_key('$gs_x', 43) ? creep

Exit: (1) gensym(x, x43) ? creep

Call: (12) np(x43, noun_phrase(determiner(some), adjective(pacifist),
noun(people)), _L388) ? creep

Call: (13) adj(x43, adjective(pacifist), _1.410) ? creep

Call: (14) adjective(pacifist)=..[adjective, _G506] ¥ creep

Exit: (14) adjective(pacifist)=..[adjective, pacifist] ¥ creep

Call: (14) _L410-=..[pacifist, x43] ? creep

Exit: (14) pacifist(x43)=..[pacifist, x43] ? creep

Exit: (13) adj(x43, adjective(pacifist), pacifist(x43)) ? creep

Call: (13) n(x43, noun(people), _1L.411) ? creep

Call: (14) noun(people)=..[noun, _GB520] ? creep

Exit: (14) noun(people)=..[noun, people] ? creep

Call: (14) _L411=..[people, x43] ? creep

Exit: (14) people(x43)=..[people, x43] ? creep

Exit: (13) n(x43, noun(people), people(x43)) ? creep

Call: (13) det(x43, determiner(some), pacifist(x43), people(x43), _L388) ?
creep

Exit: (13) det(x43, determiner(some), pacifist(x43), people(x43), exists(x43,
people(x43)&pacifist(x43))) ? creep

Exit: (1) np(x43, noun_phrase(determiner(some), adjective(pacifist),
noun(people)), exists(x43, people(x43)&pacifist(x43))) ? creep

Call: (12) v(x42, verb(conscript), exists(x43, people(x43)&pacifist(x43)),
_L347) ? creep

Call: (13) verb(conscript)=..[verb, _G540] ? creep

Exit: (138) verb(conscript)=..[verb, conscript] ? creep

Call: (13) _L347=..[conscript, x42, exists(x43, people(x43)&pacifist(x43))] ?
creep

Exit: (13) conscript(x42, exists(x43, people(x43)&pacifist(x43)))=..[conscript,
x423, exists(x43, people(x43)&pacifist(x43))] ? creep

Exit: (1) v(x48, verb(conscript), exists(x43, people(x43)8&pacifist(x43)),
conscript(x4, exists(x43, people(x43)&pacifist(x43)))) ? creep

Exit: (11) vp(x4R2, verb_phrase(verb(conscript),
noun_phrase(determiner(some), adjective(pacifist), noun(people))),
conscript(x42, exists(x43, people(x43)&pacifist(x43)))) ? creep

Exit: (10) re(x42, rel_clause(rel(that), verb_phrase(verb(conscript),
noun_phrase(determiner(some), adjective(pacifist), noun(people)))),
conscript(x42, exists(x43, people(x43)&pacifist(x43)))) ? creep

Call: (10) det(x42, determiner(all), conscript(x42, exists(x43,
people(x43)&pacifist(x43))), governments(x4:2), _L334) ? creep

Exit: (10) det(x42, determiner(all), conscript(x48, exists(x43,
people(x43)&pacifist(x43))), governments(x42), all(x42,
governments(x42)8&conscript(x42, exists(x43, people(x43)&pacifist(x43))))) ?
creep

Exit: (9) np(x48, noun_phrase(determiner(all), noun(governments),
rel_clause(rel(that), verb_phrase(verb(conscript),
noun_phrase(determiner(some), adjective(pacifist), noun(people))))), all(x42,
governments(x42)8&conscript(x42, exists(x43, people(x43)&pacifist(x43))))) ?
creep

Call: (9) vp(x42, all(x48, governments(x42)8&conscript(x48, exists(x43,
people(x43)&pacifist(x43)))), verb_phrase(be_verb(are), adjective(evil)),
_GR63) ? creep

Call: (10) gensym(x, _1L456) ? creep

Call: (13) increment_key('$gs_x', _G568) ? creep

Exit: (13) increment_key('$gs_x', 44) ? creep

Exit: (10) gensym(x, x44) ? creep

Call: (10) np(x44, adjective(evil), _L.457) ? creep

Fail: (10) np(x44, adjective(evil), _1L.457) ? creep

Redo: (9) vp(x42, all(x42, governments(x4)&conscript(x42, exists(x43,
people(x43)&pacifist(x43)))), verb_phrase(be_verb(are), adjective(evil)),
_GR63) ? creep

Call: (10) be_verb(are)=..[be_verb, are] ? creep

Exit: (10) be_verb(are)=..[be_verb, are] ? creep

Call: (10) adj(x4R, adjective(evil), _GB5658) ? creep

Call: (11) adjective(evil)=..[adjective, _GB76] ? creep

Exit: (11) adjective(evil)=..[adjective, evil] ? creep

Call: (11) _GB65=..[evil, x42] ? creep

Exit: (11) evil(x4R)=..[evil, x482] ? creep

Exit: (10) adj(x42, adjective(evil), evil(x42)) ? creep

Exit: (9) vp(x4R2, all(x42, governments(x42)8&conscript(x42, exists(x43,
people(x43)&pacifist(x43)))), verb_phrase(be_verb(are), adjective(evil)),
all(x42, governments(x4&)8&conscript(x42, exists(x43,
people(x43)&pacifist(x43)))=>evil(x42))) ? creep

Exit: (8) s(sentence(noun_phrase(determiner(all), noun(governments),
rel_clause(rel(that), verb_phrase(verb(conscript),
noun_phrase(determiner(some), adjective(pacifist), noun(people))))),

verb_phrase(be_verb(are), adjective(evil))), all(x42,
governments(x42)8&conscript(x42, exists(x43,
people(x43)&pacifist(x43)))=>evil(x42))) ? creep

Tree = sentence(noun_phrase(determiner(all), noun(governments),
rel_clause(rel(that), verb_phrase(verb(conscript),
noun_phrase(determiner(some), adjective(pacifist), noun(people))))),
verb_phrase(be_verb(are), adjective(evil))),

X = all(x42, governments(x42)8&conscript(x42, exists(x43,
people(x43)&pacifist(x43)))=>evil(x42)) .

