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1.0  Overview 
I organized this document into 6 sections which do not necessarily have to be read in order.  First I’ll 

describe the state and node representation, then how problems are generated and solved.  The last 

sections are devoted to the visualization of search trees and statistical results. 

 

 

2.0  States and Nodes 
The data structures, successor functions, and nuts-and-bolts of filtering illegal and backwards states are 

discussed here. 

 

2.1  Nodes 
Nodes are required to represent a search tree.  Each node is defined as a structure containing four 

values—pointer to the parent, action, depth, and state. 

 
(define-struct node (parent action depth state)) 

 

The action value is extraneous, as actions can be inferred if we traverse up the search tree and observe 

differences between states.  However, it is useful for debugging purposes. 

 

2.2  State Representation 
Nodes only serve as a data structure for the explored state space.  The representation of states and the 

transitions between them are what actually determine the tree structure.  States are defined by vectors of 

dimension
2n —the 0 component representing the blank square.  For 3n  the code to create a root node 

would be 

 
(define State #(6 0 8 1 2 3 4 5 7)) 

(define MyRoot (make-node null 'Root 0 State)) 

 

The make-node constructer is provided by Scheme.  Instantiating the last “action” to Root and depth to 

0, implies MyRoot is a root node.  To output anything in readable form, use the print function 

 
> (print MyRoot) 

0 Root 

{{6,0,8}, 

{1,2,3}, 

{4,5,7}} 

 

 

  



Or graphically, 

 
> (mm-print MyRoot) 

 

 

Note: All graphics were created in Mathematica.  In addition to normal textual output, I’ve written 

printing functions for Mathematica.  To see what output looks like as Mathematica code, simply add the 

prefix “mm-” to print functions.  In the future when graphics appear, they have been automatically 

generated from Scheme output and not “hand-drawn”. 

 

2.3  State Transitions 
Since there are four possible actions—up, down, left, right—there will be four possible successor states 

to any given state.  These can be found through simple transformation functions where b is the index of 

the blank and 
2n  is the size of the puzzle: 

 

VectorSwap( , )

VectorSwap( , )

VectorSwap( , 1)

VectorSwap( , 1)

Up b b n

Down b b n

Left b b

Right b b

 

 

 

 

 

 

However, we don’t want to generate illegal states.  Filtering backwards-moving states, depth-limited 

states, and closed-list states may also be desirable.  To see how this works, look at the successor 

function: 

 
(define (valid-successors n closed max-depth) 

    (map (lambda (a t f1 f2 f3) 

           (if (or f1 f2 f3) null (new-node n closed a t))) 

         '(U D L R) 

         (transform (blank (node-state n))) 

         (filter-valid (blank (node-state n))) 

         (filter-backwards (node-action n)) 

         (filter-deep (node-depth n) max-depth))) 

 

The logic is simple.  Map each move (U D L R), its transformation t, and its filters f1 f2 f3 to a 

lambda function.  If none of the three filters apply, generate the new node.  Otherwise the node is not 

generated at all. 

 

For example given the previously discussed state of MyRoot: 

 

0 Root

6 8

1 2 3

4 5 7



 
 

 filter-valid will generate (#t #f #f #f), meaning filter out the U (up) move because it is 

impossible unless the blank square leaves the border of the puzzle. 

 filter-backwards will filter out any “backwards” moves that revert to the previous state.  (In 

this case there are no previous states so it does not apply.) 

 filter-deep will filter out all nodes, generating either (#t #t #t #t)or(#f #f #f #f) if the 

depth has gone beyond the max-depth argument. 

 

To generate the successors to the node MyRoot and print a list of them: 

 
(define Depth-Limit 2) 

(define Succ (successors MyRoot (new-closed-list) Depth-Limit)) 

> (print Succ) 

 

   
 

The U move has been filtered.  To grab the successor node in the middle (1L obtained by moving left) 

and print it: 

 
(define 1L (list-ref Succ 1)) 

> (print 1L) 

 

  
 

The traversal of the tree from 1L to MyRoot gets printed.  Printing the successors of 1L gives: 

 
(define FILTER-BACKWARDS #t) 

> (print (successors 1L (new-closed-list) Depth-Limit)) 

 

0 Root

6 8

1 2 3

4 5 7

1 D

6 2 8

1 3

4 5 7

1 L

6 8

1 2 3

4 5 7

1 R

6 8

1 2 3

4 5 7

1 L

6 8

1 2 3

4 5 7

0 Root

6 8

1 2 3

4 5 7



 
 

Note that the backwards move to the right has been filtered by setting global flag FILTER-BACKWARDS 

to true.  If instead, it is set to false 

 
(define FILTER-BACKWARDS #f) 

> (print (successors 1L (new-closed-list) Depth-Limit)) 

 

  
 

Both successor nodes are generated as one might expect. 

 

 

3.0  Generating Problems and Solutions 
Efficiently generating problems of varying difficultly is not as trivial as first appears.  Once a problem is 

created, I’ll demonstrate how to run a search on it and interpret the results. 

 

3.1  Generating Problems 
With the details of the successor function out of the way, it is not too difficult to begin generating 

problems and using naïve search functions to solve them.  A problem is a random root node.  To 

generate small, illustrative problems I’ve chosen 3n .  However, the global variable N can be changed 

independently of any other part of the code (so long as the definitions are reloaded). 

 
(define N 2) 

(load "nodes") 

(print (random-root 10)) 

 

(define N 5) 

(load "nodes") 

(print (random-root 1000)) 

 

2 D

1 6 8

2 3

4 5 7

2 D

1 6 8

2 3

4 5 7

2 R

6 8

1 2 3

4 5 7



   
 

Starting from the goal state, the function (random-root n) simply does a random walk of n moves.  To 

get a random root so that the minimal cost solution is exactly n moves, random-root-checked will 

generate random nodes and check the solution path using IDS. 

 

This method of generating problems is preferable to “true” random problems obtainable through random 

permutation for two reasons.  First, random permutations need to be parity-checked to ensure they are 

solvable (half of all random permutations have no solution).  Second, manipulating solution depth rather 

than the size of n provides better control over the difficultly of a problem. 

 

Of course, a larger n will increase the probability distribution of solution depths.  For instance it can be 

experimentally verified that (random-root-checked 7) does not terminate if 2n  because it is 

impossible to generate a 3-puzzle that cannot be solved in less than 7 moves.  

 

A larger n also increases the ratio of the number of nodes with four successors to nodes with three. 

 

Breakdown of types of squares for puzzles of size n: 

2

4
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4 4
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I will demonstrate changing N does not affect search times independently of depth in section 5.6.  For 

the remainder of the examples we’ll keep 3n  unless otherwise stated. 

 

3.2  Generating Solutions 

As previously stated,  

 
(define Root (random-root-checked 5)) 

 

will generate a problem with the optimal solution at exactly depth 5.  To print the results of three 

different types of searches use: 

 
(print (bfs Root 5)) 

(print (dfs Root 5)) 

(print (ids Root 5)) 

 

0 Root

3 1

2

0 Root

8 7 4 3 6

2 1 21 24 9

11 20 15 10

22 23 13 18 14

19 12 17 16 5



Each of the search functions takes the random node Root and a depth-limit as arguments.  The output 

will be the solution path and some statistics about the search. 

 
5 D 

{{1,2,3}, 

{4,5,6}, 

{7,8,0}} 

 

4 D 

{{1,2,3}, 

{4,5,0}, 

{7,8,6}} 

 

3 R 

{{1,2,0}, 

{4,5,3}, 

{7,8,6}} 

 

2 R 

{{1,0,2}, 

{4,5,3}, 

{7,8,6}} 

 

1 U 

{{0,1,2}, 

{4,5,3}, 

{7,8,6}} 

 

0 Root 

{{4,1,2}, 

{0,5,3}, 

{7,8,6}} 

 

BFS 
Nodes expanded: 51 

Tree size (nodes): 25 

Closed-list size (states): 61 

Search time (ms): 1 

 

DFS 
Nodes expanded: 42 

Tree size (nodes): 8 

Closed-list size (states): 44 

Search time (ms): 0 

 

IDS 
Nodes expanded: 112 

Tree size (nodes): 8 

Closed-list size (states): 44 

Search time (ms): 1 

 

As the solution path results are identical for 

all three searches, I’ve only included them 

once.  The statistics are for BFS, DFS, and 

IDS, respectively. 

 

Although there are better methods for visualizing searches, a simple traversal output allows each to be 

checked for correctness.  Notice that DFS outperforms IDS in the number of nodes expanded because 

IDS must run at depth-limits 1, 2, 3, and 4 before finding a solution. 

 

The statistics are self-explanatory.   Tree size is the final number of nodes in memory, including all 

nodes on the open list and their parents (counted once if shared).  The number of nodes expanded is 

exactly the number of times the successor function has been called and therefore should be well-

correlated with search time (all other things being equal.) 

 

The search algorithms themselves are not particularly interesting.  A single flag passed to a generic 

search function determines whether a BFS or DFS will be run by changing the behavior of the open list 

from a stack to a queue.  The IDS just runs the DFS at increasing depth-limits.  Most of the code is 

dedicated to generating statistics and visual output, which will be described next. 

 

 

  



4.0  Visualizing Searches 
In this section, I’ll compare the tree structures of the different searches and how they are affected by 

depth-limits.  Closed-list filtering will be described visually. 

 

4.1  Comparing Search Trees 
Although statistics quantify search results, the best way to visualize searches themselves is through tree 

connectivity.   Sticking with an optimal goal at depth 5, but changing the maximum accepted goal 

depth— global variable GOAL-DEPTH— to 20: 

 
(define GOAL-DEPTH 20) 

(define Root (random-root-checked 5)) 

 

(mm-print (bfs Root 20)) 

(mm-print (ids Root 20)) 
(mm-print (dfs Root 5)) 

(mm-print (dfs Root 20)) 

 

Using mm-print, searches are printed as tree-plots for Mathematica.  In these tree-plots, x->y 

indicates an edge between two arbitrarily numbered vertices x and y. 

 

So although the optimal solution is 5 moves deep, any path under 21 moves will also be accepted.  To 

only accept the optimal solution GOAL-DEPTH would be set to 5. 

 

To accommodate suboptimal paths notice in most of the searches the depth-limit has been extended 

from 5 to 20.  From here on, Search-x will denote a search with a depth limit of x beyond the optimal 

solution.  So (bfs Root 20) will be denoted by BFS-15, because it will look 20 5 15   nodes deeper 

than the optimal solution. 

 

Here are the tree-plots generated from the above code: 

 

BFS-15: The solution (green path) has been found.  As it is only 5 edges long, it must be the optimal 

solution.  Notice that nodes at depth 6 have been added to the tree because BFS has a depth-limit of 20.  

However, since BFS expands nodes in a first-in-first-out order, it discovers the solution before going any 

deeper. 
 

Nodes expanded: 40 

Tree size (nodes): 76 

Closed-list size (states): 0 

Search time (ms): 1 

 



 
DFS:  The DFS with a depth-limit at 5 not only finds 

the optimal solution (shown below), but does so 

without storing all the nodes in memory.  When the 

depth-limit is set to the depth of the optimal solution, 

DFS outperforms all other naïve searches.  However, 

when the depth-limit is too deep, problems will 

occur (see next search.) 

 

           
 

              
 
Nodes expanded: 19 

Tree size (nodes): 9 

Closed-list size (states): 0 

Search time (ms): 0 

 

 

 
 

 

0 Root

1 2 3

5 7 6

4 8

1 U

1 2 3

5 6

4 7 8

2 L

1 2 3

5 6

4 7 8

3 D

1 2 3

4 5 6

7 8

4 R

1 2 3

4 5 6

7 8

5 R

1 2 3

4 5 6

7 8



DFS-15:  The solution found was much longer than 

the optimal one.  This is to be expected because the 

GOAL-DEPTH has been relaxed to 20. 

 

In addition, the performance is much worse—it is 

the only search that takes more than a millisecond to 

complete.  And with FILTER-CLOSED set to false, the 

solution contains loops.  

 
Nodes expanded: 10166 

Tree size (nodes): 33 

Closed-list size (states): 0 

Search time (ms): 156 

 

          
 

          
 

          
 

           

 

0 Root

1 2 3

5 7 6

4 8

1 U

1 2 3

5 6

4 7 8

2 U

1 3

5 2 6

4 7 8

3 L

1 3

5 2 6

4 7 8

4 D

5 1 3

2 6

4 7 8

5 R

5 1 3

2 6

4 7 8

6 U

5 3

2 1 6

4 7 8

7 L

5 3

2 1 6

4 7 8

8 D

2 5 3

1 6

4 7 8

9 R

2 5 3

1 6

4 7 8

10 U

2 3

1 5 6

4 7 8

11 L

2 3

1 5 6

4 7 8

12 D

1 2 3

5 6

4 7 8

13 D

1 2 3

4 5 6

7 8

14 R

1 2 3

4 5 6

7 8

15 R

1 2 3

4 5 6

7 8



IDS-15:  The optimal solution is found without the 

need to store all the nodes in memory (the solution is 

the same as the BFS one).  With each iteration, IDS 

runs a DFS with a depth-limit that increases.  This is 

perhaps the best of both worlds.  However if we 

know beforehand that the goal length is 5, we could 

just run DFS with a depth-limit of 5 and it would 

outperform IDS. 

 
Nodes expanded: 86 

Tree size (nodes): 9 

Closed-list size (states): 0 

Search time (ms): 0 

 

 
 

4.2  Closed-List Filtering 

Up until this point, the search-space has been discussed as a tree-like structure, whereupon actions 

always lead to novel states.  However, this is not the case with the 
2n  puzzle, where it is common to 

encounter a “loop” that returns to a previous state.  Up, right, down, left is one example.   

 

A closed-list is naturally represented by a hash-table that uses states as keys and depths as values.  States 

are added to the closed-list if they don’t match a previous state (key).  If they are found on the closed-list 

but are at a lower depth (value) they replace the old value.  All nodes that don’t modify the closed-list 

are not expanded. 

 

To demonstrate, a search tree without filtering: 

 
(define FILTER-BACKWARDS #f) 

(define FILTER-CLOSED #f) 

(define Root (random-root-checked 5)) 

(mm-print (bfs Root 5)) 

 



 
is considerably denser than the exact same search with filtering 

 
(define FILTER-CLOSED #t) 

(mm-print (bfs Root 5)) 

 

 
The 170 nodes have been reduced to 38 without any other modification.  Note that the hash table in this 

case has 61 entries, so the size reduction is not as dramatic as it seems. 

 

 

5.0  Quantitative Results 
With all the qualitative analysis out of the way, we turn back to the statistics mentioned in section 3.0 

and see how all the modifications (depth-limit, backwards-filtering, closed-lists) affect the searches.  

Although most results turn out as expected, there are a couple surprising phenomena I’ll describe in 

more detail. 

 

5.1  Creating Data 
To compare performance between searches, the function 

 
(bench trials i max-depth search max) 

 

will run a search on problems from depths i to max-depth, returned the results averaged over a 

number of trials and their standard deviation.  If the desired depth-limit of the search is greater than 

the problem depth, then max will be that added depth.  For instance, 

 
(bench 100 1 3 dfs 5) 

  



will run a DFS on problems of depths 1, 2, 3 with the depth-limit set to 6, 7, 8, respectively.  The results 

are averaged over 100 trials.  Printing the results in a readable form, 

 
> (print (bench 100 1 3 dfs 5)) 

 

Finish 1; Finish 2; Finish 3;  

Expanded = {48, 99, 176}; 

Tree = {3, 4, 5}; 

Closed = {49, 99, 175}; 

Time = {1, 2, 3}; 

ExpandedDev = {25.0, 69.0, 61.0}; 

TreeDev = {0.0, 1.0, 1.0}; 

ClosedDev = {25.0, 67.0, 59.0}; 

TimeDev = {1.0, 1.0, 1.0}; 

 

The output will be number of expanded nodes, tree size, closed-list size, and time (ms), as the 

problem size increases.  ExpandedDev refers to the standard deviation of expanded nodes between 

trials.  Results will be rounded. 

 

5.2  Closed-Lists and Backwards Filtering 

I’ll now take a look at the advantages of closed-lists with or without backwards-filtering.  I’ve used both 

a regular list and a hash table as closed-lists to compare the performance between them.  Results were 

averaged over 100 trials.  Searches in which in average time exceeded 200ms were cut-off.  Space 

includes the closed-list and tree. 

 

Explanation of graph legend: 

 Hash+B: hash-table closed-list with backwards-filtering 

 Hash: hash-table closed-list 

 List+B: list-based closed-list with backwards-filtering 

 List: list-based closed-list 

 B: only backwards-filtering 

 None: no filtering or closed-list used 

 

DFS: Expanded Nodes 
Not surprisingly, the number of expanded 

nodes is identical in all cases with a closed-

list.  Any state that would be backwards-

filtered would also be added to a closed 

list.  Backwards-filtering alone performs 

on-par with the closed-lists, although 

begins to lag behind (by an order of 

magnitude) as the chance of encountering a 

previously entered state increases with 

depth. 

 

Note that some of the graphs are in log-

linear scale. 
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DFS: Time 
The hash-table significantly outperforms 

the list.  Because they are expanding and 

storing the same number of nodes, this can 

only be attributed to the constant vs. linear 

retrieval time of the two data structures. 

 

Again backwards-filtering alone performs 

on-par with the closed-lists until depth 

increases. 

 

Although it appears that hash-table alone is 

better than hash-table with backwards-

filtering, I’ve verified experimentally that 

the difference is statistically insignificant. 

 

 
DFS: Space 
Adding a closed-list gives DFS exponential 

space requirements.  The searches without 

a closed-list are polynomial in space 

requirements with a slight advantage given 

by backwards-filtering.  Note the use of 

log-linear scale. 

 
 

BFS: Expanded Nodes/Time 
The pattern is similar to the DFS case. 
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BFS: Space 
The BFS differs from the DFS in that all 

searches take exponential space.  Filtering 

reduces the branching factor and thus takes 

less space.  Backwards filtering alone takes 

the least amount of space because the 

closed-list contains no nodes. However, as 

depth increases the closed-list becomes 

more important in reducing tree size. 

 
 

Taken together, the results suggest that backwards-filtering alone will reduce space-complexity the most 

(although this may not be true at greater depths with BFS), and a hash-table alone reduces time-

complexity the most.  Implementing the closed-list as a list instead of a hash-table is actually worse than 

having no closed-list at all (backwards-filtering assumed.) 

 

5.3  Head-to-Head Search Comparisons 

Now to compare searches with each other: 

 

DFS-5 expands the most nodes because it 

is going 5 nodes deeper than any other 

search.  Not surprisingly, IDS follows it 

because it is the summation of DFS at 

different levels.  However, IDS manages to 

find solutions in the same time as DFS. 

 

With respect to time, BFS performs worse 

than any other search by an order of 

magnitude, overtaking the DFS-5 at depth 

10. 

 

BFS has exponential space requirements, 

while the other searches have only 

polynomial requirements. 
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5.4  Backwards Filtering Worsens DFS-15? 

Intuitively, filtering out backwards moves should always improve search times.  However, I found at 

least one instance where this is not the case—when performing a depth-first search with a depth limit 

greater than the shallowest solution.  Results were obtained by running DFS-10 on problems with a 

solution at depth 5 and averaging over 1000 trials. 

 

Search Time 

(ms) 

Nodes Expanded Std. Deviation 

(Nodes) 

Tree 

DFS-10 4 185 147 40 

DFS-10 (backwards filtered) 30 1818 1157 21 

DFS-10 (filtered + random successor) 47 2454 2242 22 

DFS-10 (random successor) 88 4779 9870 36 

 

Leaving in backwards moves forces DFS to spend more time in the local state space.  Filtering out 

backwards moves plunges the search towards states which are highly unlikely to match the goal. 

 

Interestingly, randomizing successor selection seems to negate this benefit completely and performs far 

worse than both the filtered and unfiltered DFS.  One hint at why this might be the case comes from the 

ratio of the standard deviation of nodes expanded to the average nodes expanded.  In the case of the 

random successor the ratio is 9870:4770 or nearly 2:1—much larger than in the other cases.  The 

random order in which a list of successors is generated determines whether the search will stay at a 

shallow state (by making a backwards move) or will move even farther away from the goal.  

Randomized successors don’t affect a filtered list because nearly every move is farther away from the 

goal. 

 

As final proof, the tree size of the unfiltered searches is about twice as long because most solutions 

involve a lot of backtracking.  Thus, filtering out moves is undesirable if a solution exists at a shallower 

level than the depth-limit. 
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5.5  Deepest Problems 

The deepest problems are the reverse of the goal state.  To prove this take, 

     
 

If the leftmost state (reverse of goal state) is indeed the deepest problem, then all of its successors must 

be closer to the solution.  Running IDS on all three results in solutions of depths 28, 27, 27, respectively. 

 

5.6  Varying N 

I mentioned earlier in section 3.1 that changing N independently of depth does not affect search 

difficultly.  To demonstrate: 

 

All searches were conducted with solutions 

at depth 5.  Up until 5N   complexity 

increases exponentially with respect to N.  

However, beyond this time increases 

linearly and space stays constant with 

respect to N. 

 

Manipulating N only affects search 

difficulty to the extent that it increases the 

branching factor on the way to finding the 

minimal solution. 

 

Of course, with a high depth-limit as in 

DFS-5, the branching factor can cripple the 

search. 
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6.0  Raw Output 
Here I include some briefly annotated output generated in previous sections, but that was either omitted 

from those sections or replaced by corresponding graphics. 

 

4.1 / 4.2 

The search trees are output as tree-plots for visualization in Mathematica.  1->2 indicates an edge drawn 

between two arbitrarily numbered vertices. 

Input 
(define FILTER-BACKWARDS #t) 

(define FILTER-CLOSED #f) 

(define Root (random-root-checked 5)) 

 

(mm-print (bfs Root 20)) 

(mm-print (ids Root 20)) 

(mm-print (dfs Root 5)) 

(mm-print (dfs Root 20)) 

 

Output for bench-s 
TreePlot[{1->2,2->4,4->6,6->8,8->0,1->2,2->4,4->6,6->8,8->0,21->22,22->4,4->6,6->8,8->0,31->22,22->4,4->6,6->8,8->0,41->42,42->44,44->46,46->48,48->50,50->0,53->54,54->44,44->46,46->48,48->50,50-

>0,65->54,54->44,44->46,46->48,48->50,50->0,77->54,54->44,44->46,46->48,48->50,50->0,89->90,90->92,92->94,94->48,48->50,50->0,101->102,102->92,92->94,94->48,48->50,50->0,113->102,102->92,92->94,94-

>48,48->50,50->0,125->102,102->92,92->94,94->48,48->50,50->0,137->138,138->140,140->142,142->144,144->50,50->0,149->138,138->140,140->142,142->144,144->50,50->0,161->138,138->140,140->142,142-

>144,144->50,50->0,173->174,174->140,140->142,142->144,144->50,50->0,185->186,186->188,188->190,190->144,144->50,50->0,197->186,186->188,188->190,190->144,144->50,50->0,209->186,186->188,188-

>190,190->144,144->50,50->0,221->222,222->188,188->190,190->144,144->50,50->0,233->234,234->236,236->238,238->240,240->50,50->0,245->234,234->236,236->238,238->240,240->50,50->0,257->234,234-

>236,236->238,238->240,240->50,50->0,269->270,270->236,236->238,238->240,240->50,50->0,281->282,282->284,284->286,286->240,240->50,50->0,293->282,282->284,284->286,286->240,240->50,50->0,305-

>282,282->284,284->286,286->240,240->50,50->0,317->318,318->284,284->286,286->240,240->50,50->0,329->330,330->332,332->334,334->336,336->338,338->0,341->330,330->332,332->334,334->336,336->338,338-

>0,353->330,330->332,332->334,334->336,336->338,338->0,365->366,366->332,332->334,334->336,336->338,338->0,377->378,378->380,380->382,382->336,336->338,338->0,389->390,390->380,380->382,382-

>336,336->338,338->0,401->402,402->404,404->382,382->336,336->338,338->0,413->414,414->404,404->382,382->336,336->338,338->0,425->426,426->428,428->382,382->336,336->338,338->0,437->438,438-

>428,428->382,382->336,336->338,338->0,449->450,450->452,452->454,454->6,6->8,8->0,461->450,450->452,452->454,454->6,6->8,8->0,473->450,450->452,452->454,454->6,6->8,8->0,485->486,486->452,452-

>454,454->6,6->8,8->0,497->498,498->500,500->4,4->6,6->8,8->0,509->510,510->500,500->4,4->6,6->8,8->0,521->522,522->2,2->4,4->6,6->8,8->0,1->2},Automatic,0,EdgeRenderingFunction->(If[First[#2]<11 

&& Last[#2]<11,{Green, Line[#1]},{Gray, Line[#1]}] &), MultiedgeStyle->False] 

TreePlot[{1->2,2->4,4->6,6->8,8->0,1->2,2->4,4->6,6->8,8->0,21->4,4->6,6->8,8->0,1->2},Automatic,0,EdgeRenderingFunction->(If[First[#2]<11 && Last[#2]<11,{Green, Line[#1]},{Gray, Line[#1]}] &), 

MultiedgeStyle->False] 

TreePlot[{1->2,2->4,4->6,6->8,8->0,1->2,2->4,4->6,6->8,8->0,21->4,4->6,6->8,8->0,1->2},Automatic,0,EdgeRenderingFunction->(If[First[#2]<11 && Last[#2]<11,{Green, Line[#1]},{Gray, Line[#1]}] &), 

MultiedgeStyle->False] 

TreePlot[{1->2,2->4,4->6,6->8,8->10,10->12,12->14,14->16,16->18,18->20,20->22,22->24,24->26,26->28,28->30,30->32,32->34,34->36,36->0,1->2,2->4,4->6,6->8,8->10,10->12,12->14,14->16,16->18,18->20,20-

>22,22->24,24->26,26->28,28->30,30->32,32->34,34->36,36->0,77->4,4->6,6->8,8->10,10->12,12->14,14->16,16->18,18->20,20->22,22->24,24->26,26->28,28->30,30->32,32->34,34->36,36->0,113->12,12->14,14-

>16,16->18,18->20,20->22,22->24,24->26,26->28,28->30,30->32,32->34,34->36,36->0,141->18,18->20,20->22,22->24,24->26,26->28,28->30,30->32,32->34,34->36,36->0,163->20,20->22,22->24,24->26,26->28,28-

>30,30->32,32->34,34->36,36->0,183->20,20->22,22->24,24->26,26->28,28->30,30->32,32->34,34->36,36->0,203->26,26->28,28->30,30->32,32->34,34->36,36->0,217->28,28->30,30->32,32->34,34->36,36->0,229-

>28,28->30,30->32,32->34,34->36,36->0,241->34,34->36,36->0,247->36,36->0,251->36,36->0,255->0,257->0,1->2},Automatic,0,EdgeRenderingFunction->(If[First[#2]<39 && Last[#2]<39,{Green, 

Line[#1]},{Gray, Line[#1]}] &), MultiedgeStyle->False] 
 

5.2 / 5.3 

bench-4 and bench-s call bench with various flags to create the graphical output for Mathematica. 

Input 
(bench-4 100 "DFS" 1 999 dfs 0) 

(bench-4 100 "BFS" 1 999 bfs 0) 

 

(bench-s 100 1 999) 

 

Output for bench-s 
(*1*)(*2*)(*3*)(*4*)(*5*)(*6*)(*7*)(*8*)(*9*)(*10*)(*11*)(*12*)(*13*)(*14*)(*15*)(*16*) 

DFSExpanded = {8/3, 11, 15, 65/3, 43, 203/3, 173/3, 169/3, 1024/3, 1051/3, 1147/3, 3539/3, 1183, 3103, 4880, 18293/3}; 

DFSTree = {7/3, 3, 16/3, 7, 23/3, 9, 40/3, 14, 38/3, 15, 52/3, 59/3, 64/3, 65/3, 23, 74/3}; 

DFSClosed = {3, 11, 49/3, 71/3, 134/3, 209/3, 63, 184/3, 335, 1007/3, 1133/3, 1097, 3311/3, 8146/3, 4267, 15752/3}; 

DFSTime = {0, 0, 1/3, 1/3, 2/3, 5/3, 1, 1, 7, 22/3, 25/3, 27, 74/3, 212/3, 283/3, 361/3}; 

DFSExpandedDev = {0.4714045207910317, 2.8284271247461903, 2.943920288775949, 8.956685895029603, 11.86029791643813, 14.817407180595247, 16.21384867602041, 41.34677200889515, 41.282226468811274, 

234.78974045350068, 270.0152259081369, 514.431941292745, 253.26270945403706, 1251.649311908092, 1516.9620957690406, 3182.9033217418896}; 

DFSTreeDev = {0.4714045207910317, 0, 0.4714045207910317, 1.4142135623730951, 0.4714045207910317, 0.816496580927726, 1.247219128924647, 0.816496580927726, 1.247219128924647, 1.632993161855452, 

2.0548046676563256, 0.9428090415820634, 0.4714045207910317, 2.0548046676563256, 1.632993161855452, 1.247219128924647}; 

DFSClosedDev = {0, 2.8284271247461903, 2.494438257849294, 7.542472332656507, 11.440668201153676, 14.007934259633796, 15.121728296285006, 41.10420362390634, 37.47888294315436, 217.35429346780543, 

257.1346383166263, 451.7056563737054, 226.52789869878916, 1087.806763885735, 1278.704292112397, 2578.935353116777}; 

DFSTimeDev = {0, 0, 0.4714045207910317, 0.4714045207910317, 0.4714045207910317, 0.4714045207910317, 0.816496580927726, 0.816496580927726, 0.816496580927726, 4.109609335312651, 5.436502143433364, 

12.569805089976535, 4.189935029992178, 27.157974069424906, 30.00370347510824, 62.99382685805191}; 

DFSTotalSpace = DFSTree + DFSClosed; 

 

(*1*)(*2*)(*3*)(*4*)(*5*)(*6*)(*7*)(*8*)(*9*)(*10*)(*11*)(*12*) 

BFSExpanded = {8/3, 5, 16, 64/3, 118/3, 262/3, 482/3, 195, 398, 2050/3, 3173/3, 1631}; 

BFSTree = {7/3, 17/3, 29/3, 22, 155/3, 209/3, 173/3, 692/3, 715/3, 61, 1759/3, 2944/3}; 

BFSClosed = {3, 7, 19, 31, 61, 116, 183, 291, 493, 706, 1295, 6089/3}; 

BFSTime = {0, 0, 1/3, 2/3, 4/3, 3, 14/3, 43/3, 24, 52/3, 281/3, 1052/3}; 

BFSExpandedDev = {0.4714045207910317, 1.4142135623730951, 1.4142135623730951, 6.128258770283412, 5.436502143433364, 18.803073034893938, 10.842303978193728, 46.00724580614087, 72.8880420005001, 

15.173075568988056, 153.72341685276479, 372.0510717630041}; 

BFSTreeDev = {0.4714045207910317, 1.8856180831641267, 3.2998316455372216, 11.313708498984761, 9.741092797468305, 12.657891697365017, 24.63511495586917, 22.425184255405547, 175.46382976430087, 

34.18576701884377, 373.0963533578007, 334.803756782321}; 

BFSClosedDev = {0, 0, 0, 0, 0, 18.384776310850235, 0, 32.526911934581186, 0, 0, 0, 254.08703670636606}; 

BFSTimeDev = {0, 0, 0.4714045207910317, 0.4714045207910317, 0.4714045207910317, 0.816496580927726, 0.4714045207910317, 1.247219128924647, 9.092121131323903, 0.4714045207910317, 47.59084879353266, 

151.28853962617995}; 

BFSTotalSpace = BFSTree + BFSClosed; 

 

(*1*)(*2*)(*3*)(*4*)(*5*)(*6*)(*7*)(*8*)(*9*)(*10*)(*11*)(*12*)(*13*)(*14*)(*15*) 

IDSExpanded = {14/3, 16, 82/3, 167/3, 100, 162, 1243/3, 1715/3, 2843/3, 5197/3, 8573/3, 13124/3, 24190/3, 31970/3, 65488/3}; 

IDSTree = {7/3, 13/3, 5, 7, 25/3, 26/3, 9, 41/3, 15, 44/3, 49/3, 58/3, 18, 62/3, 64/3}; 

IDSClosed = {3, 31/3, 37/3, 24, 97/3, 152/3, 532/3, 131, 671/3, 512, 2204/3, 3673/3, 6239/3, 6028/3, 15575/3}; 

IDSTime = {0, 0, 0, 2/3, 0, 1, 8/3, 17/3, 16/3, 0, 53/3, 79/3, 140/3, 134/3, 631/3}; 

IDSExpandedDev = {0.4714045207910317, 2.8284271247461903, 3.2998316455372216, 2.8674417556808756, 7.0710678118654755, 29.87752778706208, 6.79869268479038, 88.02019970186136, 131.4973595003168, 

507.1234782794248, 343.3504850084758, 185.06995674308914, 201.0660477444055, 1668.1195667244267, 4228.788426435585}; 

IDSTreeDev = {0.4714045207910317, 0.9428090415820634, 0, 1.4142135623730951, 0.4714045207910317, 0.9428090415820634, 0.816496580927726, 0.4714045207910317, 0.816496580927726, 1.699673171197595, 

1.247219128924647, 1.699673171197595, 1.4142135623730951, 1.247219128924647, 2.8674417556808756}; 

IDSClosedDev = {0, 1.8856180831641267, 3.2998316455372216, 7.874007874011811, 6.599663291074443, 29.10135544762286, 6.018490028422596, 55.8091987638836, 125.33244680537527, 345.05168694945786, 

312.5479518765436, 150.8870070247564, 165.24997898806387, 1406.9030607053999, 3508.7057759553195}; 

IDSTimeDev = {0, 0, 0, 0.4714045207910317, 0, 0.816496580927726, 1.8856180831641267, 2.494438257849294, 2.8674417556808756, 0, 6.342099196813483, 4.109609335312651, 1.699673171197595, 

31.668421004036322, 198.15370016451595}; 

IDSTotalSpace = IDSTree + IDSClosed; 

 

(*1*)(*2*)(*3*)(*4*)(*5*)(*6*)(*7*)(*8*)(*9*)(*10*)(*11*) 

DFS5Expanded = {62, 493/3, 500/3, 655/3, 941/3, 1954/3, 3347/3, 1885, 3661/3, 2900, 25832/3}; 

DFS5Tree = {7/3, 3, 5, 25/3, 25/3, 31/3, 14, 44/3, 61/3, 50/3, 56/3}; 



DFS5Closed = {187/3, 162, 499/3, 213, 302, 1828/3, 3080/3, 1700, 3355/3, 2559, 21499/3}; 

DFS5Time = {4/3, 13/3, 10/3, 5, 19/3, 14, 70/3, 113/3, 76/3, 70, 829/3}; 

DFS5ExpandedDev = {24.041630560342615, 24.98443960192468, 44.78342947514801, 151.9875725913873, 214.48905695991942, 376.3529667154964, 674.5429728506718, 928.3996984058106, 764.9890340535753, 

1897.1432910211781, 5314.632965271972}; 

DFS5TreeDev = {0.4714045207910317, 0, 0, 2.6246692913372702, 0.9428090415820634, 1.699673171197595, 3.559026084010437, 3.7712361663282534, 3.2998316455372216, 3.681787005729087, 

2.8674417556808756}; 

DFS5ClosedDev = {23.570226039551585, 24.041630560342615, 42.897811391983886, 143.78687932724137, 196.5756851698602, 341.91259441884006, 602.5503206279861, 816.4022701258655, 680.0403582794839, 

1639.4446214089292, 4288.65125133247}; 

DFS5TimeDev = {0.4714045207910317, 0.4714045207910317, 0.4714045207910317, 4.320493798938574, 4.0276819911981905, 8.286535263104035, 14.055445761538676, 17.913371790059205, 16.131404843417148, 

47.588514020367, 227.08931184790612}; 

DFS5TotalSpace = DFS5Tree + DFS5Closed; 

 

ListLogPlot[{DFSTime, BFSTime, IDSTime, DFS5Time}, PlotRange -> All, Joined -> True, PlotMarkers -> {Automatic, Tiny}, AxesLabel -> {"depth", "time (ms)"}, PlotLegend -> {"DFS", "BFS", "IDS", "DFS-

5"}, LegendPosition -> {1, -.4}, LegendBorderSpace -> 1] 

 

ListLogPlot[{DFSTotalSpace, BFSTotalSpace, IDSTotalSpace, DFS5TotalSpace}, PlotRange -> All, Joined -> True, PlotMarkers -> {Automatic, Tiny}, AxesLabel -> {"depth", "space (states)"}, PlotLegend -

> {"DFS", "BFS", "IDS", "DFS-5"}, LegendPosition -> {1, -.4}, LegendBorderSpace -> 1] 

 

ListLogPlot[{DFSExpanded, BFSExpanded, IDSExpanded, DFS5Expanded}, PlotRange -> All, Joined -> True, PlotMarkers -> {Automatic, Tiny}, AxesLabel -> {"depth", "expanded (nodes)"}, PlotLegend -> 

{"DFS", "BFS", "IDS", "DFS-5"}, LegendPosition -> {1, -.4}, LegendBorderSpace -> 1] 
 

5.4  Backwards Filtering Worsens DFS-15? 

When passed to print, the output of bench is easy enough to interpret. 

Input 
(define FILTER-BACKWARDS #f) 

(define FILTER-CLOSED #f) 

(define SHUFFLE-SUCCESSORS #f)  

(print (bench 1000 5 5 dfs 10)) 

 

(define FILTER-BACKWARDS #t) 

(print (bench 1000 5 5 dfs 10)) 

 

(define SHUFFLE-SUCCESSORS #t)  

(print (bench 1000 5 5 dfs 10)) 

 

(define FILTER-BACKWARDS #f) 

(print (bench 1000 5 5 dfs 10)) 

 

Output 
(*5*)(*6*) 

Expanded = {208}; 

Tree = {41}; 

Closed = {0}; 

Time = {6}; 

ExpandedDev = {163.0}; 

TreeDev = {5.0}; 

ClosedDev = {0}; 

TimeDev = {26.0}; 

TotalSpace = Tree + Closed; 

 

(*5*)(*6*) 

Expanded = {1808}; 

Tree = {21}; 

Closed = {0}; 

Time = {34}; 

ExpandedDev = {1125.0}; 

TreeDev = {5.0}; 

ClosedDev = {0}; 

TimeDev = {48.0}; 

TotalSpace = Tree + Closed; 

 

(*5*)(*6*) 

Expanded = {2067}; 

Tree = {22}; 

Closed = {0}; 

Time = {44}; 

ExpandedDev = {2102.0}; 

TreeDev = {5.0}; 

ClosedDev = {0}; 

TimeDev = {60.0}; 

TotalSpace = Tree + Closed; 

 

(*5*)(*6*) 

Expanded = {4223}; 

Tree = {37}; 

Closed = {0}; 

Time = {91}; 

ExpandedDev = {7250.0}; 

TreeDev = {4.0}; 

ClosedDev = {0}; 

TimeDev = {163.0}; 

TotalSpace = Tree + Closed; 

 


