
15dec01.txt 25 Nov 2015 11:10 a.m. 1

Revisit to the “Y combinator,” and visit to the “recursion theorem”

Break this down into:

1. how to get a fixed-point operator,

2. how to use it to get “recursion” (or other self-reference).

————————————————————————

Consider any program transformation (program) g.

(Our “transformations” amount to “compilations” that are total.)

(Speaking in terms of programs (rather than the partial functions they compute)
seems to concretize and simplify things.)

In general, for z a program, we do not expect g(z) ≡ z.

But, for some z, g(z) ≡ z does hold!

Moreover, there is a fixed program transformation Y that gives such z.

From what? From g.

I.e., for z = Y(g), g(z) ≡ z; i.e., g(Y(g)) ≡ Y(g).

I.e., Y(g) is a “semantic fixed point” for g.

This is the “fixed-point version” of the recursion theorem.

————————————————————————

The clever recipe for such a transformation Y:

Y g ≡ λs(g(s s)) λs(g(s s)),

where, to save parentheses, juxtaposition indicates application.

This is literally the transformation we used for lambda calculus,
but we can easily implement the recipe for any common programming language.

————————————————————————

How use this to get “recursion” (or other self-reference)?

For each try z at self-reference,
the result is a fixed transformation of z to some program g(z).
(The image of “chasing one’s tail” comes to mind.)

When the try is the semantic fixed point Y(g), the reference(s)
will indeed be to a program Y(g) that is equivalent to the result g(Y(g)).
(“Catching one’s tail (sort of)” comes to mind.)

This is the “self-reference version” of the recursion theorem.


