
2Programming Language Syntax

2.4 Theoretical Foundations

As noted in the main text, scanners and parsers are based on the finite automata
and pushdown automata that form the bottom two levels of the Chomsky lan-
guage hierarchy. At each level of the hierarchy, machines can be either determin-
istic or nondeterministic. A deterministic automaton always performs the same
operation in a given situation. A nondeterministic automaton can perform any
of a set of operations. A nondeterministic machine is said to accept a string if
there exists a choice of operation in each situation that will eventually lead to
the machine saying “yes.” As it turns out, nondeterministic and deterministic
finite automata are equally powerful: every DFA is, by definition, a degenerate
NFA, and the construction in Example 2.12 (page 51) demonstrates that for any
NFA we can create a DFA that accepts the same language. The same is not true
of push-down automata: there are context-free languages that are accepted by an
NPDA but not by any DPDA. Fortunately, DPDAs suffice in practice to accept the
syntax of real programming languages. Practical scanners and parsers are always
deterministic.

2.4.1 Finite Automata

Precisely defined, a deterministic finite automaton (DFA) M consists of (1) a fi-
nite set Q of states, (2) a finite alphabet � of input symbols, (3) a distinguished
initial state q1 ∈ Q, (4) a set of distinguished final states F ⊆ Q, and (5) a transi-
tion function δ : Q × � → Q that chooses a new state for M based on the current
state and the current input symbol. M begins in state q1. One by one it consumes
its input symbols, using δ to move from state to state. When the final symbol
has been consumed, M is interpreted as saying “yes” if it is in a state in F; other-
wise it is interpreted as saying “no.” We can extend δ in the obvious way to take

13-CD

14-CD Chapter 2 Programming Language Syntax

Figure 2.32 Minimal DFA for the language consisting of all strings of zeros and ones in which
the number of zeros is even. Reprinted from Figure 2.10 in the main text.

strings, rather than symbols, as inputs, allowing us to say that M accepts string x
if δ(q1, x) ∈ F. We can then define L(M), the language accepted by M, to be the set
{x | δ(q1, x) ∈ F}. In a nondeterministic finite automaton (NFA), the transition
function, δ, is multivalued: the automaton can move to any of a set of possible
states from a given state on a given input. In addition, it may move from one state
to another “spontaneously”; such transitions are said to take input symbol ε.

We can illustrate these definitions with an example. Consider the circles-EXAMPLE 2.53
Formal DFA for
(1 *01 *0)*1 *

and-arrows automaton of Figure 2.32 (reprinted from Figure 2.10 in the
main text). This is the minimal DFA accepting strings of zeros and ones in
which the number of zeros is even. � = {0, 1} is the machine’s input alpha-
bet. Q = {q1,q2} is the set of states; q1 is the initial state; F = {q1} is the set of
final states. The transition function can be represented by a set of triples δ =
{(q1, 0,q2), (q1, 1,q1), (q2, 0,q1), (q2, 1,q2)}. In each triple (qi, a,qj), δ(qi, a) =
qj. �

Given the constructions of Examples 2.10 and 2.12, we know that there exists
an NFA that accepts the language generated by any given regular expression, and
a DFA equivalent to any given NFA. To show that regular expressions and finite
automata are of equivalent expressive power, all that remains is to demonstrate
that there exists a regular expression that generates the language accepted by any
given DFA. We illustrate the required construction below for our “even number
of zeros” example (Figure 2.32). More formal and general treatment of all
the regular language constructions can be found in standard automata theory
texts [HMU01, Sip97].

From a DFA to a Regular Expression

To construct a regular expression equivalent to a given DFA, we employ a dy-
namic programming algorithm that builds solutions to successively more com-
plicated subproblems from a table of solutions to simpler subproblems. More
precisely, we begin with a set of simple regular expressions that describe the tran-
sition function, δ. For all states i, we define

r0
ii = a

1
a

2
. . . a

m
ε

where {a
1

a
2

. . . a
m
} = {a | δ(qi, a) = qi} is the set of characters labeling

the “self-loop” from state qi back to itself. If there is no such self-loop, r0
ii = ε.

2.4 Theoretical Foundations 15-CD

Similarly, for i �= j, we define

r0
ij = a

1
a

2
. . . a

m

where {a
1

a
2

. . . a
m
} = {a | δ(qi, a) = qj} is the set of characters labeling

the arc from qi to qj. If there is no such arc, r0
ij is the empty regular expression.

(Note the difference here: we can stay in state qi by not accepting any input, so ε

is always one of the alternatives in r0
ii, but not in r0

ij when i �= j.)

Given these r0 expressions, the dynamic programming algorithm inductively
calculates expressions rk

ij with larger superscripts. In each, k names the highest-
numbered state through which control may pass on the way from qi to qj. We
assume that states are numbered starting with q1, so when k = 0 we must transi-
tion directly from qi to qj: no intervening states.

In our tiny example DFA, r0
11 = r0

22 = 1 ε, and r0
12 = r0

21 = 0. For k > 0,EXAMPLE 2.54
Reconstructing the regular
expression for a 2-state
DFA

the rk
ij expressions will generally generate multicharacter strings. At each step of

the dynamic programming algorithm, we let rk
ij = rk−1

ij rk−1
ik rk−1

kk * rk−1
kj . That is,

to get from qi to qj without going through any states numbered higher than k,
we can either go from qi to qj without going through any state numbered higher
than k − 1 (which we already know how to do), or else we can go from qi to qk

(without going through any state numbered higher than k − 1), travel out from
qk and back again an arbitrary number of times (never visiting a state numbered
higher than k − 1 in between), and finally go from qk to qj (again without visiting
a state numbered higher than k − 1).

If any of the constituent regular expressions is empty, we omit its term of the
outermost alternation. At the end, our overall answer is rn

1f1
rn

1f2
. . . rn

1ft
,

where n = |Q| is the total number of states and F = {qf1,qf2, . . . ,qft } is the set
of final states. In the first inductive step in our example,

r1
11 = (1 ε) (1 ε) (1 ε) * (1 ε)

r1
12 = 0 (1 ε) (1 ε) * 0

r1
22 = (1 ε) 0 (1 ε) * 0

r1
21 = 0 0 (1 ε) * (1 ε)

In the second and final inductive step,

r2
11 = ((1 ε) (1 ε) (1 ε) * (1 ε))

(0 (1 ε) (1 ε) * 0)

((1 ε) 0 (1 ε) * 0) *

(0 0 (1 ε) * (1 ε))

Since F has a single member (q1), this expression is our final answer. Obviously
it isn’t in a minimal form, but it is correct. �

16-CD Chapter 2 Programming Language Syntax

2.4.2 Push-Down Automata

A deterministic push-down automaton (DPDA) N consists of (1) Q, (2) �,
(3) q1, and (4) F, as in a DFA, plus (6) a finite alphabet � of stack symbols,
(7) a distinguished initial stack symbol Z1 ∈ �, and (5′) a transition function
δ : Q × � × {� ∪ {ε}} → Q × �∗, where �∗ is the set of strings of zero or more
symbols from �. N begins in state q1, with symbol Z1 in an otherwise empty
stack. It repeatedly examines the current state q and top-of-stack symbol Z. If
δ(q,ε,Z) is defined, N moves to state r and replaces Z with α in the stack, where
(r, α) = δ(q,ε,Z). In this case N does not consume its input symbol. If δ(q,ε,Z)

is undefined, N examines and consumes the current input symbol a. It then
moves to state s and replaces Z with β , where (s, β) = δ(q, a,Z). N is interpreted
as accepting a string of input symbols if and only if it consumes the symbols and
ends in a state in F.

As with finite automata, a nondeterministic push-down automaton (NPDA) is
distinguished by a multivalued transition function: an NPDA can choose any of a
set of new states and stack symbol replacements when faced with a given state, in-
put, and top-of-stack symbol. If δ(q,ε,Z) is nonempty, N can also choose a new
state and stack symbol replacement without inspecting or consuming its current
input symbol. While we have seen that nondeterministic and deterministic finite
automata are equally powerful, this correspondence does not carry over to push-
down automata: there are context-free languages that are accepted by an NPDA
but not by any DPDA.

The proof that CFGs and NPDAs are equivalent in expressive power is more
complex than the corresponding proof for regular expressions and finite au-
tomata. The proof is also of limited practical importance for compiler construc-
tion; we do not present it here. While it is possible to create an NPDA for any
CFL, that NPDA may in some cases require exponential time to recognize strings
in the language. (The O(n3) algorithms mentioned in Section 2.3 do not take
the form of PDAs.) Practical programming languages can all be expressed with
LL or LR grammars, which can be parsed with a (deterministic) PDA in linear
time.

An LL(1) PDA is very simple. Because it makes decisions solely on the basis
of the current input token and top-of-stack symbol, its state diagram is trivial.
All but one of the transitions is a self-loop from the initial state to itself. A final
transition moves from the initial state to a second, final state when it sees $$ on
the input and the stack. As we noted in Section 2.3.3 (page 85), the state diagram
for an SLR(1) or LALR(1) parser is substantially more interesting: it’s the char-
acteristic finite-state machine (CFSM). Full LR(1) parsers have similar machines,
but usually with many more states, due to the need for path-specific look-ahead.

A little study reveals that if we define every state to be accepting, then the
CFSM, without its stack, is a DFA that recognizes the grammar’s viable prefixes.
These are all the strings of grammar symbols that can begin a sentential form in
the canonical (rightmost) derivation of some string in the language, and that do

2.4 Theoretical Foundations 17-CD

not extend beyond the end of the handle. The algorithms to construct LL(1) and
SLR(1) PDAs from suitable grammars were given in Sections 2.3.2 and 2.3.3.

2.4.3 Grammar and Language Classes

As we noted in Section 2.1.2, a scanner is incapable of recognizing arbitrarilyEXAMPLE 2.55
0n1n is not a regular
language

nested constructs. The key to the proof is to realize that we cannot count an arbi-
trary number of left-bracketing symbols with a finite number of states. Consider,
for example, the problem of accepting the language 0n1n. Suppose there is a DFA
M that accepts this language. Suppose further that M has m states. Now suppose
we feed M a string of m+1 zeros. By the pigeonhole principle (you can’t distribute
m objects among p < m pigeonholes without putting at least two objects in some
pigeonhole), M must enter some state qi twice while scanning this string. With-
out loss of generality, let us assume it does so after seeing j zeros and again after
seeing k zeros, for j �= k. Since we know that M accepts the string 0 j1 j and the
string 0k1k, and since it is in precisely the same state after reading 0 j and 0k, we
can deduce that M must also accept the strings 0 j1k and 0k1 j. Since these strings
are not in the language, we have a contradiction: M cannot exist. �

Within the family of context-free languages, one can prove similar theorems
about the constructs that can and cannot be recognized using various parsing
algorithms. Though almost all real parsers get by with a single token of look-
ahead, it is possible in principle to use more than one, thereby expanding the set
of grammars that can be parsed in linear time. In the top-down case we can rede-
fine FIRST and FOLLOW sets to contain pairs of tokens in a more or less straight-
forward fashion. If we do this, however, we encounter a more serious version of
the immediate error detection problem described in Section 2.3.4. There we
saw that the use of context-independent FOLLOW sets could cause us to overlook
a syntax error until after we had needlessly predicted one or more epsilon pro-
ductions. Context-specific FOLLOW sets solved the problem, but did not change
the set of valid programs that could be parsed with one token of look-ahead. If
we define LL(k) to be the set of all grammars that can be parsed predictively us-
ing the top-of-stack symbol and k tokens of look-ahead, then it turns out that for
k > 1 we must adopt a context-specific notion of FOLLOW sets in order to parse
correctly. The algorithm of Section 2.3.2, which is based on context-independent
FOLLOW sets, is actually known as SLL (simple LL) rather than true LL. For k = 1,
the LL(1) and SLL(1) algorithms can parse the same set of grammars. For k > 1,
LL is strictly more powerful. Among the bottom-up parsers, the relationships
among SLR(k), LALR(k), and LR(k) are somewhat more complicated, but extra
look-ahead always helps.

Containment relationships among the classes of grammars accepted by pop-EXAMPLE 2.56
Separation of grammar
classes

ular linear-time algorithms appear in Figure 2.33. The LR class (no suffix)
contains every grammar G for which there exists a k such that G ∈ LR(k); LL,
SLL, SLR, and LALR are similarly defined. Grammars can be found in every re-

18-CD Chapter 2 Programming Language Syntax

gion of the figure. Examples appear in Figure 2.34. Proofs that they lie in the
regions claimed are deferred to Exercise 2.26. �

For any context-free grammar G and parsing algorithm P, we say that G is a
P grammar (e.g., an LL(1) grammar) if it can be parsed using that algorithm.
By extension, for any context-free language L, we say that L is a P language if
there exists a P grammar for L (this may not be the grammar we were given).
Containment relationships among the classes of languages accepted by the pop-EXAMPLE 2.57

Separation of language
classes

ular parsing algorithms appear in Figure 2.35. Again, languages can be found
in every region. Examples appear in Figure 2.36; proofs are deferred to Exer-
cise 2.27. �

Note that every context-free language that can be parsed deterministically has
an SLR(1) grammar. Moreover, any language that can be parsed deterministically
and in which no valid string can be extended to create another valid string (this
is called the prefix property) has an LR(0) grammar. If we restrict our attention to
languages with an explicit $$ marker at end-of-file, then they all have the prefix
property and, therefore, LR(0) grammars.

The relationships among language classes are not as rich as the relationships
among grammar classes. Most real programming languages can be parsed by any
of the popular parsing algorithms, though the grammars are not always pretty,
and special purpose “hacks” may sometimes be required when a language is al-
most, but not quite, in a given class. The principal advantage of the more pow-
erful parsing algorithms (e.g., full LR) is that they can parse a wider variety of
grammars for a given language. In practice this flexibility makes it easier for the
compiler writer to find a grammar that is intuitive and readable, and that facili-
tates the creation of semantic action routines.

CHECK YOUR UNDERSTANDING

55. What formal machine captures the behavior of a scanner? A parser?

56. State three ways in which a real scanner differs from the formal machine.

57. What are the formal components of a DFA?

58. Outline the algorithm used to construct a regular expression equivalent to a
given DFA.

59. What is the inherent “big-O” complexity of parsing with an NPDA? Why is
this worse than the O(n3) time mentioned in Section 2.3?

60. How many states are there in an LL(1) PDA? An SLR(1) PDA? Explain.

61. What are the viable prefixes of a CFG?

62. Summarize the proof that a DFA cannot recognize arbitrarily nested con-
structs.

63. Explain the difference between LL and SLL parsing.

64. Is every LL(1) grammar also LR(1)? Is it LALR(1)?

2.4 Theoretical Foundations 19-CD

Figure 2.33 Containment relationships among popular grammar classes. In addition to the
containments shown, SLL(k) is just inside LL(k), for k ≥ 2, but has the same relationship to
everything else, and SLR(k) is just inside LALR(k), for k ≥ 1, but has the same relationship to
everything else.

LL(2) but not SLL:

S −→ a A a b A b a

A −→ b ε

SLL(k) but not LL(k − 1):

S −→ ak−1 b ak

LR(0) but not LL:

S −→ A b

A −→ A a a

SLL(1) but not LALR:

S −→ A a B b c C
C −→ A b B a

A −→ D
B −→ D
D −→ ε

SLL(k) and SLR(k) but not LR(k − 1):

S −→ A ak−1 b B ak−1 c

A −→ ε

B −→ ε

LALR(1) but not SLR:

S −→ b A b A c a b

A −→ a

LR(1) but not LALR:

S −→ a C a b C b a D b b D a

C −→ c

D −→ c

Unambiguous but not LR:

S −→ a S a ε

Figure 2.34 Examples of grammars in various regions of Figure 2.33.

20-CD Chapter 2 Programming Language Syntax

Figure 2.35 Containment relationships among popular language classes.

Nondeterministic language:

{an
b

n
c : n ≥ 1} ∪ {an

b
2n
d : n ≥ 1}

Inherently ambiguous language:

{ai
b

j
c

k
: i = j or j = k ; i, j, k ≥ 1}

Language with LL(k) grammar but no LL(k−1) grammar:

{an
(b c b

k
d) n : n ≥ 1}

Language with LR(0) grammar but no LL grammar:
{an

b
n

: n ≥ 1} ∪ {an
c

n
: n ≥ 1}

Figure 2.36 Examples of languages in various regions of Figure 2.35.

65. Does every LR language have an SLR(1) grammar?

66. Why are the containment relationships among grammar classes more com-
plex than those among language classes?

	Programming Language Syntax
	Theoretical Foundations

