
Chapter 1: Polyalphabetic Ciphers:

Vigenere

Blaise de Vigenere (1586). Saw lots of use

starting around 1800. Cracked by Chas.

Babbage about 1854, not published (Crimean

war secrecy?), and independently by Friedrich

Wilhelm Kasiski in 1863.

Symmetric, periodic. Long thought

unbreakable, known to Casanova (!!). 4-liner

in Matlab.

1



Vigenere

Idea: repeat N-long key, plaintext underneath:

COMETCOMETCOMETCOMET

riverrunpasteveandad

Then encipher each plaintext char with shift

cipher whose first letter is the key letter

above.

Attacks: Chosen Plaintext: choose all a’s (0),

get key back. Known plaintext the same:

subtract the plaintext from ciphertext (mod

26) to get effect of enciphering with 0s.

Ciphertext only: Need LCM and GCD for

Kasiski (to find key length), statistics for

Friedman (to find the key length and the

key.)

Examples...

2



Details

Formula for Vigenere:

E(xi) = (xi + ki%m)%26, where

k0, k2, ..., km−1 is the key

D(xi) = (xi − ki%m)%26

Beaufort Variation:

E(xi) = D(xi) = (ki − xi)%26.

Two encryptions with different keys yield

period of LCM of key lengths. Each plaintext

char can appear as more than one ciphertext

char, each ciphertext char can represent more

than one plaintext char. Long keys possible –

one-time pad is end case.

3



Kasiski Attack Weakness is periodicity:

exploit to find key length.

• If two identical chunks of plaintext (words,

tri- or bi-grams...) are separated by some

multiple of the keylength, they will

generate identical chunks of ciphertext.

• Look for repeated groups of ciphertext

letters, chart their separation distances.

• Factor the distances. Ideally their GCD is

the key length. GCD sharpens search, not

really needed.

• Not always that simple of course: look for

recurring factors, any factor in most of

the GCDs...

• Long messages will yield more accidents

destroying GCD trick.

4



Why Does Kasiski Work?

• If all groups (e.g. trigrams) in English

were equally likely, most matches would

be accidents, no accumulation of evidence

for any factor.

• Most frequent trigrams are 1-2%, but

1/(263) is .0057%, so should work for

keys < 100 long.

• Work goes up as keylength squared!

5



Finding Key We know the key length:

exploit weakness of Caesar shift

• Break ciphertext into groups of chars

whose indices are the same mod m (so

they were all enciphered with same shift).

• These chars are all from a rotated

alphabet, so ideally, their histogram is a

rotated version of the English A-Z

frequency histogram.

• Find shift that maximizes correlation
∑n

i=1 xi ∗ yi (maximum vector dot product)

• Or which minimizes sum of absolute

differences (minimum vector difference).

• If key is in meaningful, guess it after part

appears.

6



Friedman Attack and IOC Friedman attack

(1925) more systematic, based on Index of

Coincidence that measures all forms of

statistical dependence in English.

• IOC(y, z) = (1/N)
∑

δ(yi, zi), with

δ(a, b) = 1 if a = b, else 0. Defined for any

strings of same length, measures the

proportion of characters that match.

• Either or both strings random: IOC =

1/26 = 3.85%.

• English is nonrandom; turns out IOC =

6.7%.

• Vigenere ciphertext is (less) nonrandom;

turns out its IOC = 4.7%.

• Approximate IOC based only on

single-letter frequencies:

IOCave =
∑

P (yi) ∗ P (zi). Not bad, for

English it’s 6.4%.

7



IOC Cont.

• Can compute either exact IOC (by

counting) or average IOC (by computing

letter frequencies and multiplying) for two

specific strings.

• OR even for a single string:

IOCavg(y) =
∑

P (yi)
2

• So we’ve got an inner (dot) product and

norm in a 26-d space of character

frequencies. And dot products are good

for matching.

• * If plaintexts x, y are encrypted by same

substitution or transposition cipher,

IOC(E(x), E(y)) = IOC(x, y).

• If two strings encrypted by any (even

different) transpositions, their IOCavg is

unchanged.

8



Decipherment– Key Length

Remember:

* If plaintexts x, y are encrypted by same

substitution or transposition cipher,

IOC(E(x), E(y)) = IOC(x, y).

Thus we find key length by taking IOC of

ciphertext with shifted version of itself. Look

for IOC of .47 with periodic spikes of .67.

Avoid shifts < 3 or 4, since local dependencies

in English mask the correlation we want. May

find multiple of key length due to accidents.

9



Decipherment– Key

Again, break ciphertext into key-length

columns, each encrypted by same shift.

Probably easiest at this point to use

histogram-matching technique of Kasiski to

find shift (key letter) in each position.

Or can take two cols i and j, reencrypt i by all

the different shifts, and look for good IOC

between those encryptions and j. Some small

technical issues here.

If Vigenere substitution alphabets are general

(not shifts), much harder, though key-length

determination still works. The keys are longer

of course, 26m instead of m.

10



Autokey

See the Assignment!

11


