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The image flow of a moving figure
varies both spatially and tempo-
rally. We develop a model-free
description of instantaneous mo-
tion, the shape of motion, that
varies with the type of moving fig-
ure and the type of motion. We use
that description to recognize indi-
viduals by their gait, discriminating
them by periodic variation in the
shape of their motion. For each im-
age in a sequence, we derive dense
optical flow, (u(x, y), v(x, y)).
Scale-independent scalar features
of each flow, based on moments
of the moving point weighted by
|u|, |v|, or |(u, v)|, characterize the
spatial distribution of the flow.

We then analyze the periodic
structure of these sequences of
scalars. The scalar sequences for
an image sequence have the same
fundamental period but differ in
phase, which is a phase feature for
each signal. Some phase features
are consistent for one person
and show significant statistical
variation among persons. We
use the phase feature vectors to
recognize individuals by the shape
of their motion. As few as three
features out of the full set of twelve
lead to excellent discrimination.

Keywords: action recognition,
gait recognition, motion features,
optic flow, motion energy, spatial
frequency, analysis
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1 Introduction
Our goal is to develop a model-free description of image motion, and
then to demonstrate its usefulness by describing the motion of a walking
human figure and recognizing individuals by variation in the character-
istics of the motion description. Such a description is useful in video
surveillance where it contributes to the recognition of individuals and
can indicate aspects of an individual’s behavior. Model-free descriptions
of motion could also prove useful in vision-based user interfaces by help-
ing to recognize individuals, what they are doing, and nuances of their
behavior.

The pattern of motion in the human gait has been studied in kinesi-
ology using data acquired from moving light displays. Using such data,
kinesiologists describe the forward propulsion of the torso by the legs,
the ballistic motion of swinging arms and legs, and the relationships
among these motions [23, 30]. Similarly, in computer vision, model-
based approaches to gait analysis recover the three-dimensional struc-
ture of a person in a model and then interpret the model. The literature
on moving light displays provides an introduction to modeling and mov-
ing figures [11]. Unuma, Anjyo, and Takeuchi [42] show the value of a
structural model in describing variations in gaits. They use Fourier analy-
sis of joint angles in a model to synthesize images of different types of
gaits, e.g., a happy walk versus a tired walk.

Alternatives to the model-based approach emphasize determining
features of the motion fields, acquired from a sequence of images, with-
out structural reconstruction. Recent theoretical work demonstrates the
recoverability of affine motion characteristics from image sequences
[38]. It is therefore reasonable to suggest that variations in gaits are
recoverable from variations in images sequences and that a model-free
approach to gait analysis is viable. Moreover, during periodic motion
the varying spatial distribution of motion is apparent. Capturing this
variation and analyzing its temporal variation should lead to a useful
characterization of periodic motion.

Hogg [16] was among the first to study the motion of a walking figure
using an articulated model. There have recently been several attempts to
recover characteristics of gait from image sequences, without the aid of
annotation via lights [35, 5, 27, 28, 31, 32, 3, 4]. Niyogi and Adelson
[27, 28] emphasize segmentation over a long sequence of frames. Their
technique relies on recovering the boundaries of moving figures in the
xt domain [27] and recently [28] xyt spatiotemporal solids, followed by
fitting deformable splines to the contours. These splines are the elements
of the articulated nonrigid model whose features aid recognition.

Polana and Nelson [31, 32] characterize the temporal texture of a
moving figure by “summing the energy of the highest amplitude fre-
quency and its multiples.” They use Fourier analysis. The results are
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normalized with respect to total energy so that the measure is 1 for pe-
riodic events and 0 for a flat spectrum. Their input is a sequence of 128
frames, each 128 × 128 pixels. Their analysis consists of determining
the normal flow, thresholding the magnitude of the flow, determining
the centroid of all “moving” points, and computing the mean velocity of
the centroid. The motion in xyt of the centroid determines a linear tra-
jectory. They use as motion signals reference curves that are “lines in the
temporal solid parallel to the linear trajectory.”

Polana and Nelson’s more recent work [32, 33] emphasizes the spatial
distribution of energies around the moving figure. They compute spatial
statistics in a coarse mesh and derive a vector describing the relative
magnitudes and periodicity of activity in the regions over time. Their
experiments demonstrate that the values so derived can be used to
discriminate among differing activities.

Shavit and Jepson [39, 40] use the centroid and moments of a bi-
narized motion figure to represent the distribution of its motion. The
movement of the centroid characterizes the external forces on an object,
while the deformation of the object is computed from the dispersion (the
eigenvalues of the covariance matrix) or ratio of lengths of the moment
ellipse.

Bobick and Davis [6] introduced the Motion Energy Image (MEI), a
smoothed description of the cumulative spatial distribution of motion
energy in a motion sequence. They match this description of motion
against stored models of known actions. Bobick and Davis [7] enhanced
the MEI to form a motion-history image (MHI), where pixel intensity
is a function, over time, of the energy in the current motion energy
(binarized) and recent activity, which they extend in later work [14].
We will discuss these two representations further in Section 2.2.

Baumberg and Hogg [3] present a method of representing the shape
of a moving body at an instance in time. Their method produces a
description composed of a set of principal spline components and a
direction of motion. In later work, Baumberg and Hogg [4] add temporal
variation by modeling the changing shape as a vibrating plate. They
create a vibration model for a “generic” pedestrian and then are able
to measure the quality of fit of the generic data to another pedestrian.

Liu and Picard [22] detect and segment areas of periodic motion in
images by detecting spectral harmonic peaks. The method is not model
based and identifies regions in the images that exhibit periodic motion.

Recently more elaborate models, often including kinematics and dy-
namics of the human figure, are used to track humans in sequences [36,
9, 19, 18, 43].

Our work, in the spirit of Polana and Nelson, and Baumberg and
Hogg, is a model-free approach making no attempt to recover a struc-
tural model of a human subject. Instead we describe the shape of the
motion with a set of features derived from moments of a dense flow dis-
tribution [20]. Our goal is not to fingerprint people, but to determine
what content of motion aids recognition. We wish to recognize gaits,
both types of gaits as well as individual gaits. The features are invariant
to scale and do not require synchronization of the gait or identification
of reference points on the moving figure.

The following sections describe the creation of motion features and
an experiment that determines the variation of the features over a set of
walking subjects. Results of the experiment show that features acquired
by our process exhibit significant variation due to different subjects and
are suitable for recognition of people by subtle differences in their gaits,
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Figure 1. Sample image from exper-
imental data described in Section 3
(number 23 of 84 images, sequence
3 of subject 5).

Figure 2. The structure of the image
analysis. Each image sequence
produces a vector of m − 1 phase
values.

image sequence
( n + 1 frames)

optical flow

time−varying
scalars

scalar 
sequences

phases

phase 
features

feature vector

...

(s1,s2,...,sm) (s1,s2,...,sm) (s1,s2,...,sm) (s1,s2,...,sm)

S1={s11,s12,...,s1n} S2={s21,s22,...,s2n} Sm={sm1,sm2,...,smn}

φ1 φ2 φm

F1 = φ1 − φm F2 = φ2 − φm Fm−1 = φm−1 − φm...
(F1,F2, ... ,Fm−1)

as identified by phase analysis of periodic variations in the shape of
motion.

2 Motion Feature Creation
Image sequences are gathered while the subject is walking laterally
before a static camera and processed offline. Motion stabilization could
be accomplished by a tracking system that pursues a moving object, e.g.,
Little and Kam [21]. However, our focus is on the motion, so we restrict
the experimental situation to a single subject moving in the field of view
before a static camera. Figure 1 shows an example of the images used,
image number 23 of 84 in a sequence taken from the experimental data
described in Section 3.

Figure 2 illustrates the data flow through the system that creates our
motion features. We begin with an image sequence of n+ 1 images and
then derive n dense optical flow images. For each of these optical flow
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images we compute m characteristics that describe the shape of the mo-
tion (i.e., the spatial distribution of the flow), for example, the centroid
of the moving points, and various moments of the flow distribution.
Some of these are locations in the image, but we treat all as time-varying
scalar values. We arrange the values to form a time series for each scalar.
A walking person undergoes periodic motion, returning to a standard
position after a certain time period that depends on the frequency of the
gait. Thus we analyze the periodic structure of these time series, and
determine the fundamental frequency of the variation of each scalar.
The set of time series for an image sequence share the same frequency,
or simple multiples of the fundamental, but their phases vary. To make
the data from different sequences comparable, we subtract a reference
phase, φm, derived from one of the scalars. We characterize each image
sequence by a vector, F = (F1, . . . , Fm−1), of m− 1 relative phase fea-
tures. The phase feature vectors are then used to recognize individuals.

2.1 Tracking and Optical Flow
The motion of the object is a path in three dimensions; we view its pro-
jection. Instead of determining motion of three-dimensional elements of
a figure, we look for characteristics of the periodic variation of the two-
dimensional optical flow.

The raw optical flow identifies temporal changes in brightness; how-
ever, illumination changes such as reflections, shadows, moving clouds,
and inter-reflections between the moving figure and the background, as
well as reflections of the moving figure in specular surfaces in the back-
ground, pollute the motion signal. To isolate the moving figure, we man-
ually compute the average displacement of the person through the image
sequence and then use only the flow within a moving window traveling
with the average motion. Within the window there remain many islands
of small local variation, so we compute the connected components of
each Fj and eliminate all points not in sufficiently large connected re-
gions. The remaining large components form a mask within which we
can analyze the flow. This reduces the sensitivity of the moment compu-
tations to outlying points.

Figure 3 shows six subimages from the sequence corresponding to
Figure 1. We will refer to the subimages as images from here on and
will display our results in subimages, for compactness. All processing is
carried out in the coordinates of the original frames.

Unlike other methods, we use dense optical flow fields, generated by
minimizing the sum of absolute differences between image patches [10].
The algorithm is sensitive to brightness change caused by reflections,
shadows, and changes of illumination, so we first process the images
by computing the logarithm of brightness, transforming the multiplica-
tive effect of illumination change into an additive one. Filtering by a
Laplacian of Gaussian (effectively a bandpass filter) removes the addi-
tive effects.

The optical flow algorithm, for each pixel, searches among a limited
set of discrete displacements for the displacement (u(x, y), v(x, y)) that
minimizes the sum of absolute differences between a patch in one image
and the corresponding displaced patch in the other image. The algorithm
finds a best-matching patch in the second image for each patch in the
first. The algorithm is run a second time, switching the roles of the two
images. For a correct match, the results will likely agree. In order to
remove invalid matches, we compare the results at each point in the
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Figure 3. Subimages 21 through 26
for the sequence corresponding to
Figure 1.

image 21 image 22 image 23

image 24 image 25 image 26

first image with the result at the corresponding point in the second. The
second point should match to the first: the sum of displacement vectors
should be approximately zero [25, 15]. Only those matches that pass
this validation test are retained.

The results could be interpolated to provide subpixel displacements,
but we use only the integral values. In effect, the minimum displacement
is 1.0 pixels per frame; points that are assigned non-zero displacements
form a set of moving points. Let T (u, v) be defined as

T (u, v)=
{

1, if |(u, v)| ≥ 1.0
0, otherwise

T (u, v) segments moving pixels from non-moving pixels. Figure 4 shows
the moving points for the images in Figure 3.

2.2 Spatial Distribution of Flow
The flow component of the system provides dense measurements of
optical flow for a set of points in the image. Instead of finding the
boundary of this set [3, 4], we use all the points and analyze their spatial
distribution. We use the points with unit values, as signified by T (as
shown in Figure 4), as well as weighted by the magnitude of the motion,
|(u, v)|, at every point, as shown in Figure 5, and weighted by |u| and |v|,
as shown in Figures 6 and 7.

To describe the spatial distribution, we compute the centroid of all
moving points. The x and y coordinates of a centroid are two scalar
measures of the distribution of motion. We also compute the second
moments of each spatial distribution. The moment of inertia about an
axis [41] describes the distribution by the average of the product of the
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Figure 4. The moving points for
images in Figure 3. (White is moving
and black is stationary.)

image 21 image 22 image 23

image 24 image 25 image 26

Figure 5. The magnitudes of the flow,
|(u, v)|, for images in Figure 3.

image 21 image 22 image 23

image 24 image 25 image 26
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Figure 6. The x component of flow,
u, for images in Figure 3.

image 21 image 22 image 23

image 24 image 25 image 26

Figure 7. The y component of flow,
v, for images in Figure 3.

image 21 image 22 image 23

image 24 image 25 image 26
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Figure 8. The centroid and moment
ellipse for T (box and solid lines)
and for T |(u, v)| (cross and dashed
lines) for images in Figure 3.

image 21 image 22 image 23

image 24 image 25 image 26

mass at each point by its distance from the axis. The moment varies
with the direction of the axis; it can be succinctly described by an ellipse
whose major and minor axes show the minimum and maximum values
of the moment.

The shape of motion is the distribution of flow, characterized by sev-
eral sets of measures of the flow: the moving points (T ) and the points
in T weighted by |(u, v)|, |u|, and |v|. The features of the flow include
the centroids and second moments of these distributions. It characterizes
the flow at a particular instant in time.

The shape of motion varies systematically during a motion sequence.
The relative positions of the centroids of T and T |(u, v)| vary system-
atically over the sequence. Figure 8 displays the centroid of T as a box
and the moment ellipse for T in solid lines superimposed on the image
sequence. The centroid of T |(u, v)| is shown as a cross, and its ellipse is
shown in dashed lines. The ratio of the lengths of the major and minor
axes of these ellipses is a scale-invariant measure of the distribution of
motion, reflecting both the position and velocity of the moving points.1

Figure 9 shows the centroids of these two distributions plotted in the
coordinates of the original image sequence.

The scalar measures we extract are shown in Table 1 (summations are
over the image).

Each image Ij in an image sequence generates m= 13 scalar values,
sij , where i varies from 1 to m, and j from 1 to n. We assemble scalar

1. Hogg in 1983 noted the periodic variation of the size of the bounding box of a moving
figure.
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Figure 9. Plot of (xc, yc) and
(xwc, ywc) for the full example im-
age sequence, as cross and diamond,
respectively.
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sequences for each time-varying scalar, Si. The next section describes
how we compute the frequency and phase for each of these signals.

The Motion Energy Image (MEI) [6] is arrived at by: binary thresh-
old of motion displacements computed by thresholding the pixelwise
summed squared difference between each image and the first, over an
entire sequence. The features characterizing the MEI are a set of the
seven Hu moments, which are translation, scale, and rotation invari-
ant [17], plus terms sensitive to orientation and correlation of x and
y, and a measure of compactness. Likewise the MEI is one image, now
grey-valued to represent the recent history of motion at a location, that
represents an entire sequence. The critical difference in our approach is
that the shape of motion is a description of the instantaneous distribu-
tion of motion at one point in a sequence, rather than an integration of
the motion of an entire sequence into a pair of images. We then observe
the variation of the description and compute features derived over time.
Shavit and Jepson [40] likewise observe the variation in shape of the
moment ellipse but use it to derive conclusions about forces affecting
the object.

2.3 Frequency and Phase Estimation
A human gait has a single, fundamental driving frequency, as a conse-
quence of the fact that the parts of the body must move in a cooperative
manner. For example, for every step forward taken with the left foot, the
right arm swings forward exactly once. Since all components of the gait,
such as movements of individual body parts, have the same fundamen-
tal frequency, all signals derived by summing the movements of these
parts must also have that frequency. It is possible for higher frequency
harmonics to be introduced, but only in integer multiples of the funda-
mental. Although the frequency of the scalar sequences derived from a
gait must be the same, the phases of the signals vary. We find the phase
of each signal after first finding the fundamental frequency.

The time series we generate contain relatively few cycles and are very
noisy. Both these factors confound Fourier transform techniques because
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Table 1. Summary of scalar measures
describing the shape of the optical
flow.

Description Label Formula

x coordinate of centroid xc
∑
xT /

∑
T

x coordinate, centroid of xwc
∑
x|(u, v)|T/∑ |(u, v)|T

|(u, v)| distribution

y coordinate, centroid of ywc
∑
y|(u, v)|T/∑ |(u, v)|T

|(u, v)| distribution

x coordinate of difference xd xwc−xc
of centroids

y coordinate of difference yd ywc−yc
of centroids

aspect ratio (or elonga- ac λmax/λmin, where λs are eigenvalues of
tion), ratio of length of second moment matrix for distribution
major axis to minor axis
of an ellipse

elongation of weighted awc as in ac, but for weighted distribution
ellipse

difference of elongations ad ac−awc
x coordinate, centroid of xuwc

∑
x|u|T/∑ |u|T

|u| distribution

y coordinate, centroid of yuwc
∑
y|u|T/∑ |u|T

|u| distribution

x coordinate, centroid of xvwc
∑
x|v|T/∑ |v|T

|v| distribution

y coordinate, centroid of yvwc
∑
y|v|T/∑ |v|T

|v| distribution

y coordinate of centroid yc
∑
yT /

∑
T

of the inevitable presence of sidelobes in the spectrum. To avoid this
problem, we turn to maximum entropy spectrum estimation [37]. This
technique can be summarized as follows.

1. Find a set of coefficients that predicts values of a time series from a
set of previous values.

2. Build a linear shift-invariant filter that gives the difference between
the predicted values and the actual signal.

3. If the coefficients predict the underlying sinusoidal signal correctly,
then the output of the filter must be noise.

4. The spectrum of the noise and the z-transform of the filter are
known, so the spectrum of the underlying sinusoids can be derived.

We use the least-squares linear prediction (LSLP) method of Barrodale
and Erickson [1, 2] to find the prediction coefficients. From there it is a
simple matter to compute the spectrum.

Let {xt} be a time series of length n. Then {x̂t} are the values of the
sequence predicted by the m linear coefficients aj , j = 1, . . . ,m, i.e.,

x̂t =
m∑
j=1

ajxt−j , t =m+ 1,m+ 2, . . . , n (1)

predicts xt . To find the coefficients that give the best prediction, Barro-
dale and Erickson find the least-squares solution of
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Figure 10. Plot of xc, without linear
component subtracted, for image
sequence shown in Figure 3.
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Ca = y, (2)

where

C =


xm xm−1 . . . x1
xm+1 xm . . . x2

...
...

. . .
...

xn−1 xn−2 . . . xn−m

 ,

a =


a1
a2
...
am

 , and y =


xm+1
xm+2

...
xn

 .

Solving for a from the symmetric positive definite system of equations

CTCa = CT y, (3)

gives a set of coefficients that minimizes the L2 norm of the prediction
error, which is the residual of Equation (2). Barrodale and Erickson also
show variations of the method that yield coefficients optimized for re-
verse prediction and forward and backward prediction combined. We
solve the forward and backward prediction variation (to exploit the data
in the short series as much as possible [37] using LU decomposition
[34]. Before applying LSLP, we subtract the linear background, as es-
timated by linear regression, from the signal. We can do this because the
subject walks with a constant velocity. (See Figures 10 and 11.)

The coefficients provide the autoregressive parameters required for
the maximum entropy spectrum of the time series using

P(ω)= Pm1t∣∣∣1−∑m
j=1 aje

iωj1t

∣∣∣2 (4)
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Figure 11. Plot of xc, with the linear
component subtracted, and the sinu-
soid representing the fundamental
frequency from the LSLP fit for the
sequence in Figure 3.
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where 1t is the sampling period, Pm = Sm/2(n − m), and Sm is the L2
norm of the prediction error of Equation (2). Note that {x̂t} is never com-
puted. Within the constant scaling factor of Pm1t , only the coefficients
{aj} are needed to compute the spectrum. The number of coefficients
required for an accurate spectrum depends on the content of the signal
and the amount of noise. A pure sinusoid with no noise requires only
two coefficients. As the noise increases, the required number of coeffi-
cients also increases. However, if too many coefficients are used then the
spectrum begins to model the noise and shows erroneous peaks. Twenty
coefficients are used to estimate the spectrum for the time series consid-
ered here. This proved to be a reliable number and only in the noisiest
sequences was it necessary to use a different number to avoid modeling
the noise. To get the fundamental frequency of the gait, we compute the
spectrum from the coefficients for a set of frequency values using Equa-
tion (4), and find the frequency at which the spectrum is maximum,
ωmax. This is the fundamental frequency.

Given the fundamental frequency of the time series, it is a simple
matter to compute the phase of the signal. The coefficients of the Fourier
representation of an infinite time series are given by Oppenheim and
Schafer [29]:

X(eiω)=
∞∑

t=−∞
xte
−iωt . (5)

Since we know the frequency of the maximum in the spectrum, ωmax, we
compute the Fourier coefficient for that frequency from the finite time
series using

X(eiωmax)=
n∑
t=1

xte
−iωmaxt . (6)
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Figure 12. LSLP spectrum of yc, for
image sequence shown in Figure 3;
the fundamental frequency is at
0.063.
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Figure 13. Plot of yc, with linear
component subtracted, and LSLP
fit for image sequence shown in
Figure 3.
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The phase angle of the complex coefficient X(eiωmax) gives the phase of
a signal with respect to a fixed reference and allows comparison of the
phase relationship among various signals from the same sequence.

For example, Figure 10 shows the xc signal for the sequence shown
in Figure 3. Figure 11 shows xc with the linear background removed
to reveal the sinusoidal signal. Superimposed on this signal is a pure
sinusoid with frequency ωmax at the phase given by Equation (6). Fig-
ure 12 is the LSLP maximum entropy spectrum of the yc signal based on
twenty forward and backward prediction coefficients. The frequency ω
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Figure 14. Plot of ac, with linear
component subtracted, and LSLP
fit for image sequence shown in
Figure 3.
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is expressed as a ratio of fs, the sampling frequency, where fs is 1/1t .
The spectrum, Figure 12, shows a definite maximum that identifies the
frequency of the gait. Figures 13 and 14 show two additional examples
of signals, yc and ac, and their LSLP fits.

2.4 Phase Features
The phase computed by Equation (6) depends arbitrarily on where the
sequence begins in the subject’s gait. In order to get a feature that has
no arbitrary dependencies, it is necessary to select one of the signals as
a phase reference for all the others. The measurement of yc was empir-
ically determined to be the most reliable over all the image sequences
that we sampled in experimentation. The frequency computed for it is
one step, for example, from the left footfall to the right footfall, which
takes approximately 16 frames for most image sequences. We choose the
fundamental frequency, ωmax, from the spectrum of yc and compute the
other phase measurements, fixing the frequency.

The frequency computed independently for the other scalar measures
either differs slightly or is a multiple of the frequency of yc, as shown in
Table 2.

Figure 15 shows the ywc signal and its LSLP fits, both at the fundamen-
tal, 0.063, and its own best LSLP fit, at frequency 0.125. The spectrum
of that signal, ywc (which appears in Figure 16), shows a strong peak at
0.125 (which is approximately a harmonic of 0.063), and also shows a
peak comparable to the peak in the original spectrum (Figure 12). The
strong harmonic appears only in the signals of the weighted distribution,
and only in the y elements. We believe this is due to occlusions as the
rapidly moving limbs disappear behind the body. Nevertheless, the fit at
the fundamental is also quite good.

We use the phase of yc as the reference and subtract it from the other
phase measurements for an image sequence to create the phase feature
vector. We can thus avoid having to identify a reference position (say,
for example, the left footfall) in each image sequence. Variation in the
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Table 2. ωmax computed for scalar
sequences corresponding to image
sequence in Figure 3.

xc 0.0635

yc 0.0635

xwc 0.063

ywc 0.125

xd 0.063

yd 0.063

ac 0.0625

awc 0.0625

ad 0.064

xuwc 0.063

yuwc 0.1255

xvwc 0.02

yvwc 0.0625

Figure 15. Plot of ywc, with linear
component subtracted, and LSLP
fits for image sequence shown in
Figure 3, both at 0.063 and 0.125.
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measurement of the reference propagates to each of the other phase
features, so a reliable reference is essential to minimize variation in the
feature vector. Our thirteen scalar features (m= 13) thus provide twelve
measurements per image sequence. Figure 17 shows a plot of the fits to
all of xc, yc, ac, and yvwc, and illustrates the phase relationships among
them.2

At this point we have completed the analysis of the image sequences
as shown in Figure 2. We have computed the shape of motion for each
pair of images, giving a set of thirteen measurements for each optical
flow image. Each scalar measurement, collected for the sequence, yields
a time series that is then analyzed by LSLP to produce a phase value,
at the fundamental frequency determined from yc. These thirteen values

2. The relative magnitudes of the signals may also be useful information, but we have not
investigated their use.
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Figure 16. LSLP spectrum of ywc, for
image sequence shown in Figure 3;
the fundamental frequency is at
0.063, but the dominant frequency
here is 0.125.
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Figure 17. Plots of LSLP fits to xc,
yc, ac, and yvwc, image sequence 3
of subject 5. xc and ac are almost in
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out of phase.
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are reduced to twelve, by subtracting the reference phase for yc, yielding
a phase vector for an image sequence. The phase vector is independent
of image scale or temporal sampling period, as well as the relative speed
of the gait, as long as it remains a normal walking gait.

3 Experiment
To verify the usefulness of the proposed description, we analyzed a
set of image sequences of a set of six walking subjects viewed from a
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Figure 18. Schematic of experimen-
tal apparatus, plan view.
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static camera before a fixed background, computing the shape of mo-
tion and deriving phase features for each sequence. We then used the
phase features in a simple recognition test: we computed the mean phase
vector for each subject and then classified each sequence by minimum
Euclidean distance from the mean vector. As part of this test, we de-
termined the subset of the twelve features that were most effective for
recognition.

In our experiment we sampled the gaits of six people using the appa-
ratus depicted in Figure 18. A camera fixed on a tripod points towards
a fixed non-reflecting static background. We achieved diffuse lighting by
acquiring the data outdoors and in the shade. The subjects walked in a
circular path such that on one side of the path they passed through the
field of view of the camera and passed behind the camera on the other
side. The subjects walk this path for approximately fifteen minutes while
the images are recorded on video tape.

After discarding at least the first two passes recorded to avoid anoma-
lies caused by awareness of the camera, seven image sequences of each
of the selected subjects were digitized from the tape, i.e., there are six
people and seven sequences per person for a total of 42 sequences. The
length of each sequence varies with the amount of time each person
takes to traverse the field of view, but the average length is about 80
frames at 30 frames per second.

Images digitized from the tape have a resolution of 480× 640 pixels
in 24-bit full color. Before computing the optical flow, we convert the
picture to a gray scale (we use the Y component of a YUV transformation
of the RGB values) and subsample it, by averaging, to half the original
resolution. The resulting images have a resolution of 240× 320. Figure 1
shows an example frame of the lower-resolution resampled black and
white images. We could have used only one field of the image, but
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the gain of vertical resolution using a full frame offsets the temporal
smoothing produced by using both fields. We use only the lower 160
pixels, cutting off the top (which contains only sky). If the camera were
closer we would have had a better view of the moving figures, at the
cost of shorter sequences. We opted to get long sequences to improve
frequency and phase estimation. Since the step is approximately 10-20
frames, we need at least that, preferably at lease two steps to include
the full cycle. We have used at least 60 frames in all our experiments but
have not experimented with shorter sequences.

4 Results
We analyze the phase features in two ways. First, analysis of variance
allows us to determine whether or not there is any significant variation
in the phase features among the subjects. Second, we test the matches
between each sequence and the remaining sequences to show successful
recognition. The following two sections describe the results based on
these analyses.

4.1 Analysis of Variance
Analysis of variance (ANOVA) is a statistical method used to indicate the
presence of a significant variation in a variable related to some factor.
Here the variables are the phase features and the factor in which we are
interested is the person walking in front of the camera. Our analysis uses
a single-factor ANOVA as described by Winer [45]. The method analyzes
only a single variable and must be repeated for each phase feature.
We used the commercial statistical software package StatView 4.5 to
perform the analysis.

Care is necessary because most statistical software expects a contin-
uous random variable to exist on a line, but phase features exist on a
circle, i.e., the phase wraps around causing problems for conventional
computations. For example, suppose we have two phase measurements
of +175◦ and −175◦. The mean of these numbers computed in the con-
ventional way is 0◦, but because the phase wraps around, the correct
mean is 180◦ (or −180◦). The incorrect mean of 0◦ leads to erroneous
variances and confounds ANOVA. We were able to use the commercial
software by transforming any feature with a distribution crossing 180◦
by rotating the reference for that feature by 180◦, performing the analy-
sis, and then rotating the result back. To perform the rotation we used
the following formula:

θnew =
{
θ − 180◦ if θ ≥ 0
θ + 180◦ if θ < 0

.

This approach proved to be simple and effective while allowing us to
capitalize on the reliability of commercial software.

We now show the analysis for the single phase feature, xc, summa-
rized in Table 3. The numbers given indicate the phase as a fraction of a
circle’s circumference. Therefore, all phases are in the range [−0.5, 0.5].
ANOVA computes the F statistic (the ratio of the between-person vari-
ance to the within-person variance) for each feature, and an associated
probability. The probability indicates the likelihood that the null hypoth-
esis is true. In this case, the null hypothesis is that the mean feature
values for all the people are the same, namely

H0 : µ1 = µ2 = µ3 = µ4 = µ5 = µ6,
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Table 3. Summary of experimental
measurements of xc phase feature.
Each column is a different person.

Person 1 2 3 4 5 6

Seq. 1 −0.266 −0.270 −0.220 −0.264 −0.284 −0.345

Seq. 2 −0.271 −0.274 −0.275 −0.230 −0.319 −0.317

Seq. 3 −0.283 −0.271 −0.238 −0.255 −0.282 −0.303

Seq. 4 −0.264 −0.273 −0.244 −0.237 −0.288 −0.327

Seq. 5 −0.289 −0.258 −0.258 −0.255 −0.257 −0.309

Seq. 6 −0.313 −0.263 −0.270 −0.260 −0.208 −0.304

Seq. 7 −0.278 −0.264 −0.246 −0.265 −0.233 −0.318

Table 4. Results of Scheffe’s post-
hoc test for xc. Each entry is the
probability that the null hypothesis
is true for the persons indicated
on the row and column. The star
(*) indicates a probability of the
null hypothesis that is less than the
arbitrary significance level of 5%.
The null hypothesis is no significant
difference between persons.

2 3 4 5 6

1 0.93 0.20 0.26 0.91 0.06

2 0.75 0.84 >0.999 <0.01*

3 >0.99 0.78 <0.01*

4 0.86 <0.01*

5 <0.01*

Table 5. F-values and P(H0) for all
phase features: low probabilities
indicate that there is significant
variation.

Variable F-value P(H0)

xc 10.38 <0.0001
yc Reference
xwc 6.54 0.0002
ywc 21.86 <0.0001
xd 4.77 0.0019
xd 4.77 <0.0001
yd 31.16 <0.0001
ac 17.28 <0.0001
awc 15.90 <0.0001
ad 43.86 <0.0001
xuwc 6.92 0.0001
yuwc 4.85 0.0017
xvwc 16.45 <0.0001
yvwc 18.21 <0.0001

where µi is the mean for person i. For the data shown in Table 3, the
F-value is 10.376, with degrees of freedom 5 and 36, yielding P(H0) <

0.0001. It is therefore reasonable to conclude that at least one of the
means is significantly different from the others.

While the F-value gives a reliable test of the null hypothesis, it cannot
indicate which of the means is responsible for a significantly low prob-
ability. For this we use Scheffe’s post-hoc test [12]. This test looks at all
possible pairs of means and produces a probability that the null hypoth-
esis, H0 : µi = µj , for each pair is true. Table 4 summarizes Scheffe’s
post-hoc test for xc. Asterisks in the table indicate values that are sig-
nificant for an arbitrary significance level of 5%. Scheffe’s test is fairly
conservative, compensating for spurious significant results that occur
with multiple comparisons [12]. Results in Table 4 indicate that signifi-
cant variation in xc occurs because person 6 differs from the others.

Table 5 summarizes the F-values for all of the phase features. Two
features, yd and ad, exhibit a large number of significant probabilities.
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Table 6. Results of Scheffe’s post-
hoc test for yd . Each entry is the
probability that the null hypothesis
is true for the persons indicated on
the row and column. The star (*)
indicates a probability less than the
arbitrary significance level of 5%.

2 3 4 5 6

1 <0.0001* 0.0113* <0.0001* 0.0025* <0.0001*

2 <0.0001* 0.5588 <0.0001* 0.0081

3 0.0015* 0.9957 0.2444

4 0.0072* 0.3899

5 0.5328

Table 7. Results of Scheffe’s post-
hoc test for ad . Each entry is the
probability that the null hypothesis
is true for the persons indicated on
the row and column. The star (*)
indicates a probability less than the
arbitrary significance level of 5%.

2 3 4 5 6

1 0.9756 0.0017* <0.0001* 0.9591 0.0390*

2 0.0162* <0.0001* 0.6108 0.0047*

3 0.0048* 0.0001* <0.0001*

4 <0.0001* <0.0001*

5 0.2543

The post-hoc tests for these features are shown in Tables 6 and 7. All
features showed some significant variations with ywc, yd, ad, and yvwc
showing the greatest variation.

4.2 Recognition
To test the usefulness of these features, we use the phase vectors in a sim-
ple recognition test. Each vector of twelve relative phase measurements
is treated as a point in a twelve-dimensional space. We have seven im-
age sequences for each of six subjects. The statistical analysis shows that
there is significant variation among the subjects, in the phase features.
Figure 19 plots a scattergram of two features, yd and ad; each symbol
denotes the value of the phase features for a particular image sequence

Figure 19. Plot of scatter of yd
versus ad .
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Figure 20. Stereo plot of features ad ,
yd , and ywc.
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Table 8. Description Label Number(s)

x coordinate of centroid (xc,yc) 1

x and y coordinates of (xwc,ywc) (2,3)
centroid of |(u, v)|
distribution

x and y coordinates of (xd ,yd) (4,5)
difference of centroids

aspect ratio (or ac 6
elongation)

elongation of weighted awc 7
ellipse

difference of elongations ad 8

x and y coordinates of (xuwc,yuwc) (9,10)
centroid of |u| distribution

x and y coordinates of (xvwc,yvwc) (11,12)
centroid of |v| distribution

of a particular subject. It is clear from the scattergram that these fea-
tures should be useful for discriminating among the subjects; it would
be easy to introduce linear discrimination boundaries separating the fea-
ture points for the image sequences of one subject from its neighbors.
Figure 20 shows a stereo plot of the three most statistically significant
features, ywc, yd, and ad.

Another way to visualize the data is to plot the phase vectors as twelve
points in the phase range from −0.5 to 0.5. The twelve phase features
are listed in Table 8.

Figure 21 shows several phase vectors for one subject. Most of the
phase values vary little between image sequences. Figure 22 collects
three phase vectors from image sequences of three different subjects.
In comparison with Figure 21, there is substantial variation among the
phase features across subjects.

In our recognition tests, we use the class mean of the seven feature
vectors as an exemplar for the class. Figure 23 superimposes the phase
vectors from two image sequences of one subject with its class exem-
plar. Finally, Figure 24 shows the class exemplars for all six subjects.
The phase values show repeatability for a single subject and variation
between subjects.
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Figure 21. Phase vectors for two
image sequences of subject 1.
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Figure 22. Phase vectors for image
sequences of subjects 1, 4, and 5.
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We tried three different simple classification methods: nearest-
neighbor, k-nearest-neighbors, and nearest-neighbor with class exem-
plars. To compare phase vectors, we sum the squared elementwise
differences of phase angles, adjusted for the phase wraparound at
0.5 = −0.5. In the nearest-neighbor test (NN), each phase vector is
classified as belonging to the class of its nearest neighbor feature vector.
In the k-nearest-neighbor test, k = 3 (3NN), we find the three nearest
neighboring vectors, and choose the class of the majority, or, if no major-
ity, simply the nearest neighbor. The exemplar method (exNN) classifies
a vector as the class of its nearest-neighbor exemplar or class mean. In
all our tests the exemplar method behaves best so we will report only its
results.

We have six people, each with seven image sequences. For a small
number of examples, such as our 42, the literature suggests computing
an unbiased estimate of the true recognition rate using a leaving-one-out
crossvalidation method [44]. We leave one example out, train on the rest
(compute exemplars), and then classify the omitted element using these
exemplars. We perform this experiment for each of the 42 examples, and
report the number of correct classifications.
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Figure 23. Phase vectors for two
image sequences of subject 5, plus
the exemplar for the subject.
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Figure 24. Phase vectors for the
exemplars of all six subjects. Error
bars show the standard deviation for
each subject.
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Using the full feature vector we achieved a recognition rate of 90.5%,
but we can do slightly better using a subset of the features. We per-
formed a full combinatorial experiment in which all subsets of features
were tested for recognition rate using various crossvalidation methods.
Table 9 shows the results obtained by leaving one vector out of the train-
ing and testing it against the exemplars, for the full possible range of
features.

To make the results even stronger, we performed crossvalidation using
fewer of the data for training and testing more examples. We used the
simple procedure of treating the seven examples for each person as an
index set: (1234567), and selecting one, two, or three sequences (by
index) for each person, training on the remaining six, five, or four,
and testing. We use all possible choices of size one, two, or three from
seven, for each of six people. The number of tests is, for s = 7 sequences,
p = 6 people, and k test vectors,

(
s
k

) ∗ p ∗ k: for k = 1, 42= (71) ∗ 6 ∗ 1=
7 ∗ 6 ∗ 1; for k = 2, 252= (72) ∗ 6 ∗ 2= 21 ∗ 6 ∗ 2; and for k = 3, 630=
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Table 9. Results of recognition, using
leave-one-out crossvalidation, with
the number of features used and
percentage correct.

Number Features Percent correct

1 ad 66.7

2 ad , yvwc 85.7

3 ywc, ad , yvwc 90.5

4 yd , ac, ad , yvwc 92.9

5 xd , yd , awc, ad , yvwc 95.2

6 xd , yd , awc, ad , xuwc, yvwc 95.2

Table 10. Subsets of size k = 1: re-
sults of recognition, with the number
of features used and percentage cor-
rect.

Number Features Percent correct

1 ad 66.7

2 ywc, ad 85.7

3 ywc, ad , yvwc 90.5

4 yd , awc, ad , yvwc 95.2

5 yd , awc, ad , xuwc, yvwc 95.2

Table 11. Subsets of size k = 2: re-
sults of recognition, with the number
of features used and percentage cor-
rect.

Number Features Percent correct

1 ad 61.9

2 ad , yvwc 85.3

3 ywc, ad , yvwc 88.5

4 yd , awc, ad , yvwc 91.7

5 xc, yd , ac, ad , yvwc 93.7

(7
3

) ∗ 6 ∗ 3= 35 ∗ 6 ∗ 3. Again we perform full combinatorial experiments
and find the best features. Table 10 shows the results for k = 1, Table 11
for k = 2, and Table 12 for k = 3.

Even when almost half of the data are omitted, the recognition rates
remain over 90% when five features are used out of twelve. Only three
features are needed for excellent success rates.

The analysis of variance predicts that the features will have the fol-
lowing approximate significance:

ad > yd > ywc > yvwc > ac > xvwc >

awc > xc > xuwc > xwc > yuwc > xd.

The scattergram of yd and ad indicates why these features are actually
useful in recognition (Figure 19); the separation of subjects using these
features is quite good. When we consider triples of features, using exNN,
the subsets of features that showed best recognition rates were (ywc, ad,
yvwc), (yd, ad, yvwc), and (ywc, yd, ad). These correspond well with the

Table 12. Subsets of size k = 3: re-
sults of recognition, with the number
of features used and percentage cor-
rect.

Number Features Percent correct

1 ad 60.5

2 ad , yvwc 84.6

3 ywc, ad , yvwc 87.6

4 yd , awc, ad , yvwc 89.8

5 xc, yd , ac, ad , yvwc 92.2
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features that statistical analysis predicts will be useful. The F-value com-
puted by ANOVA indicates whether or not a single feature is useful for
classification. It may be possible to transform multiple features to obtain
better classification features [13], but ANOVA indicates the minimum
that we should expect.

We have tested using the direct Euclidean distance and also the Ma-
halanobis distance (which scales the difference in each coordinate by the
inverse of the variance in that dimension) [24], but the Euclidean works
better. With this little data the variance estimates are unreliable.

5 Discussion
5.1 Comparison with Other Methods
The other techniques for representing human motion have been applied
to recognizing activities [26], but only Niyogi and Adelson [27] have
specifically tried to recognize individuals by their motion. Our imaging
situation is exactly the same they used to achieve a recognition rate of
up to 83%. There is no reason to expect that their method would not
work well with this data.

Niyogi and Adelson acquire contours by examining spatiotemporal
solids of adjoined images. At a particular height y, the bounding con-
tours found in xyt form a trace over a sequence in t , yielding a vector
x(y, t). They then adjust for overall x translation, find the period by look-
ing at the maximum x extent, and linearly interpolate the x(y, t) signals
at a fixed relative height.

Finally, they use a simple Euclidean distance or a more robust
weighted distance between x(y, t) vectors for recognition.

Our system achieves higher recognition rates, but it should be pos-
sible to equal our results with their system. Our system is much more
general, however, in that it is not model based, and could apply equally
to the motion of animals. Our results show that it is unnecessary to
assume a model-based interpretation of the moving figure. Instead, the
shape of motion retains much of the relevant information about the mo-
tion of the figure and can be analyzed to recover phase features that
allow discrimination among individuals. We do expect that discrimina-
tion would suffer when the database of individuals became large; simple
motion cues could identify types of gaits, but would no longer uniquely
identify an individual.

5.2 Effects of Flow Computation
The results presented in this paper reflect flow computed using constant
spatial support for flow correspondence. However, in the course of our
investigations we tried computing the flow with varying amounts of
spatial support. Limited spatial support gives a high spatial resolution in
the flow but is more susceptible to noise. In trials with limited spatial
support we had to segment the foreground from the background to
mask background noise. Broader support obviates the requirement for
foreground separation but reduces the spatial resolution of the flow.
Recognition was equally effective, provided that flow parameters were
kept constant, but there were variations in the results that were worth
noting.

The coarse, low-noise flow (broad support) yielded phase features
that had lower between-subject variations. In other words, the subjects
looked more alike. At the same time, however, variations for individual
subjects dropped, and recognition still worked. Changing the resolution
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of the flow changed the set of features showing the most-significant
variation. Features that were useful for fine flow were not necessarily
viable for coarse flow, and vice versa. The key factor is that whatever
combination of flow algorithm and parameters is used, that combination
must be held constant for recognition to work.

The figures appearing in this paper are for flow with relatively high
spatial resolution. Elements of a figure such as moving arms or legs have
high velocities, and change their spatial orientation during movement,
unlike the trunk. Thus, flow values of the center of the body are less sub-
ject to noise. With better spatiotemporal resolution, the limbs are better
detected in the flow. This suggests that the features of flow that depend
on the spatial distribution of velocities would be more important. This is
exactly what we found. In these tests, the phase features that were most
effective in recognition included ad, yd, ywc, and yvwc.

5.3 Intuitive Understanding of Phase Features
After statistical analysis and testing of classification methods, we must
consider why these phase features allow recognition. At present we have
no provable explanation, but we offer the following speculation based
on our experimental results and intuition.

The phase features we compute are scale independent. They should
not vary with the distance between the camera and the subject. No
scaling of the data is required. The phase of the scalar signals remains
unchanged if the subject is small or large in the camera field of view.

We expected that the difference signals, xd, yd, and ad, would work
very well for recognition. These signals can convey information about
the relative magnitudes of the two signals they are derived from, and
perhaps in doing so may convey information about the build of the
subject. The phase of a sum or difference of two sinusoids gives an in-
dication of their relative magnitude. The phasor diagram in Figure 25
illustrates this point.3 The figure shows the phasor subtraction of two
signals, A and B, to yield the difference C. Although the phase relation-
ship between A and B is the same in both (a) and (b) of Figure 25,
the difference in the relative magnitude causes the phase of the differ-
ence, C, to be different. Therefore, phase features are not only scale
independent, but also phases of signal differences are sensitive to the

3. A phasor, or phase vector, is a rotating vector that represents a quantity that varies
sinusoidally. They are useful in the analysis of systems in which the signals share a common
frequency but vary in magnitude and phase, e.g., alternating current electrical systems.

Figure 25. Phasor diagram illus-
trating the dependence of phasor
difference on relative magnitude:
(a) example of phasor subtraction
C = A− B, and (b) altering only the
relative magnitude of A and B gives
a different phase for the difference.
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relative magnitudes of the scalar signals. This means that people of dif-
fering builds but with similar rhythms might still be distinguished by our
analysis.

Our expectations were largely realized in our results: ad and yd were
excellent for recognition where high spatiotemporal resolution was used,
but xd was poor. Our results suggest that, while our notions about the
usefulness of the difference signals may be valid, we still need to under-
stand better the effects of flow calculations on the features.

5.4 Limitations of Results
Although the analysis of our results is valid, we are limited in our ability
to extrapolate them. Our sample size was small (only six subjects) so
we cannot conclude much about gaits in the entire human population.
In addition to the small sample size, no steps were taken to ensure a
random sample. However, the excellent recognition results and strong
statistical evidence of variation between subjects attest to the value of
shape-of-motion features.

As mentioned in Sections 5.1 and 5.2, the parameters used in the
computation of optical flow can affect the values of the phase features.
Although we believe that varying parameters and methods for comput-
ing optical flow will produce features useful for recognition, we do not
yet understand enough to predict which features will be the best.

It is entirely possible, even likely, that there are correlations among
the various features. We have not analyzed the data extensively to iden-
tify these correlations.

In an effort to control the conditions of the experiment, we considered
only pedestrians walking across the camera field of view. There is no
reason to expect that shape-of-motion features are invariant to viewing
angle, so we expect recognition—using the features we have acquired—
to fail if the view is not approximately perpendicular to the direction
of the gait. Some of our preliminary results suggest that recognition is
possible for pedestrians walking towards and away from the camera. Our
experiments included only three sequences each for two subjects; we
were able to classify five out of six for a sequence in which the subject
walks across the field of view, but with some motion towards the camera.
For sequences walking towards and away from the camera, we correctly
classified all six sequences.

However, the exemplars are not similar in the two cases. When mo-
tion is perpendicular to the viewing direction, self-occlusion is maximal,
but the figure’s relative motion is largest. Motion along the viewing
direction eliminates self-occlusion, but the relative motion is less. In
surveillance applications where multiple cameras are employed, this is
not likely to be a problem. One simply selects the images from the cam-
era with the best viewing angle for recognition. Moreover, it is possible
to identify which direction an individual is walking and use that infor-
mation to select the appropriate set of exemplars tuned to the direction
of movement.

The controlled experimental situation eliminates other considera-
tions, such as moving backgrounds, tracking cameras, and occlusions.

5.5 Future Work
The experiment described here attempts to eliminate confounding fac-
tors from the experiment by acquiring all image sequences under iden-
tical circumstances. There remains the task of determining what effect
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other factors may have, such as viewing angle, clothing of subjects, and
time.

For practical application of shape-of-motion features, we need to
know the useful range of camera views over which the recognition will
work for a single set of exemplars. A useful experiment would be to
determine the sensitivity of the features to viewing angle. The results
would enable a multicamera surveillance system to select an optimal
view for recognition.

People have ways of subjectively describing the way a person walks.
A person may have a bouncy walk or perhaps a shuffle. One may in-
fer that a person is excited or lethargic based on such observations. A
future experiment may determine if the phase features of walking can
be correlated to subjective descriptions of the way a person walks. The
result would be a feature space that is segmented based on subjective
descriptions. Some human-figure animation work in computer graphics
by Unuma et al suggest that this may be possible [42]. They model a
human gait using a set of periodic joint-angle functions for several sub-
jectively different gaits. They then interpolate Fourier decompositions
of these signals to generate a variety of gait types. Based on this idea,
our proposed model-free recognition method may be able not only to
recognize, but describe too.

Model-free recognition may be applied to the domain of image data-
bases. The method could search a large database of image sequences for
gaits of various types. For example, one could search a database for se-
quences that contain periodic motion. Then, if the moving region has
all the correct phase relationships, one may conclude that the sequence
contains a person walking. Further analysis may allow one to search for
people who walk like a given person, or exhibit certain characteristics in
their gait.

Moving light displays (MLDs) have seen extensive use in gait analysis,
and experiments with them have shown that recognition by humans is
possible using the MLD images alone. The focus of computer analysis of
MLDs has been on the construction of a kinematic model of the subject.
Our results suggest that this may not be necessary for recognition. Opti-
cal flow computed from MLD images may be viewed as a point sampling
of the full flow field. If the sampling is sufficient to estimate the scalars
used in our recognition system, then model-free recognition is possible.
In related work [8], we have examined the relationships between the
MLD flow and full flow images and found that the phase features have
values, when derived from the MLD images, that are similar to the val-
ues using full gray-value images. This suggests that there is no need to
determine an articulated model to interpret MLD images.

6 Summary
The spatial distribution of optical flow, the shape of motion, yields
model-free features whose variation over time is periodic. The essen-
tial difference among these features is the relative phase between the
periodic signals. Our experiments and analysis demonstrate that these
phase measurements are repeatable for particular subjects and vary sig-
nificantly between subjects. The variation makes the features effective
for recognizing individuals by characteristics of their gait, and the recog-
nition is relatively insensitive to the means for computing optical flow.
The phase analysis applies directly to periodic motion events, but the
flow description, the shape of motion, applies to other motions.
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