
Article 2

A Compact Sensor
for Visual Motion
Detection

Thomas Röwekamp
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This article presents a new sensor
system for optical flow estimation.
The sensor system is characterized
by real-time computation based on
image frames with high resolution.
The core of the system is an
ASIC in digital CMOS technology
which performs the optical flow
computation.

Although a specialized hard-
ware is developed, the system is
characterized by means of flexibil-
ity. A generic input interface makes
it well suited to be connected to
standard photosensitive compo-
nents and the output interface can
be connected to high-level image
processing modules.
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1 Introduction
Ranging from simple animals to humans, biological systems have proved
to perform amazing tasks based on visual motion analysis. To do so, dur-
ing evolution special structures are developed to perform these tasks
[23]. Until today, artificial vision systems were not able to solve a lot
of vision tasks in real time as their biologic counterparts do. Even if they
perform well on restricted subtasks, they are physically large and have
high power requirements. A task that poses a major real-time constraint
is the motion recognition. While in the animal eye any motion awakes
the hunting instinct, the artificial motion recognition system has to sup-
port mainly collision avoidance for autonomous systems in an environ-
ment of moving (dynamic) obstacles. Until now the existing approaches
cannot support autonomous platforms operating at a speed of 1 m/s.

The motion analysis task can be seen in the frame of low-level and
high-level image processing. Low-level image processing tasks transform
images to imagelike outputs and are characterized by high parallelism,
whereas high-level image processing tasks take the low-level output and
generate a symbolic answer [4]. In the case of visual motion analysis,
optical flow has proved to be a useful intermediate measure and can
be considered as low-level image processing [6]. The subsequent high-
level modules generate a symbolic answer from the optical flow data,
e.g., collision-danger alarm, 3-D structure, and motion characteristics.
Due to the different requirements, low-level and high-level tasks require
different computational structures. This article presents a new optical
flow sensor system implemented as a low-level entry for motion analysis
in real time.

In the second part of this introduction we give a short overview of
the state-of-the-art development in the area of optical flow. In Section 2
we present the system architecture of the proposed optical flow sensor
deducted from the constraints imposed by the chosen application range.
In Section 3 we concentrate on the core of our implementation, the
processing unit. The test measurements of the implemented ASIC are
presented in Section 4. We are concluding our paper with some remarks
in Section 5.

Previous contributions to systems for real-time optical flow compu-
tation can be divided into two groups. The first group is more-or-less
biology inspired [19, 10, 12, 1], where the approaches of Kramer and
Ancona et al are the most advanced ones. Kramer reported a sensor cell
that measures the time of travel of edges between two fixed locations.
The sensor cell is reported to be insensitive to stimulus contrast and se-
lective to a high range of velocities. The approach was implemented on
a 128× 128 sensor array. Ancona et al presented a minaturized system
based on three components: a custom CMOS photosensitive surface, a
correlation circuit, and a microcontroller. In terms of size and weight,
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these sensors are well suited for a mobile robot application, but the op-
tical flow resolution is not high enough for motion segmentation. In
addition, these highly specialized sensors cannot be reconfigured for
multipurpose use.

The other systems, which we label system solutions [11, 13], deliver a
motion field with high resolution at video rates. They employ specialized
correlation or neural-network circuits to gain real-time performance.
However, these systems are large and power consuming. Therefore, they
are mainly installed on a standalone computer that receives the image
information via a radio or infrared link from the mobile platform. Our
brief overview of the main research approches shows that until now
there is no optical flow sensor architecture that is appropriate to enhance
a vision sensor for use on a mobile platform and that is adapted to the
needs of low power, small size, and high speed.

2 System Architecture
To use visual motion analysis on an artificial computational system, the
system has to fulfill certain requirements.

Real-time operation: predictability, throughput, and latency Usu-
ally, the task of motion analysis is not restricted to just detection of
motion but aimed to trigger certain reactions on detected motion. These
reactions require a system with predictable execution time and high
throughput. The requested small latency makes the behavior of such a
system more stable. This is a major advantage if the motion analysis is
part of a control loop.

Spatial resolution The resolution of the optical flow field affects the
range of computable velocities. Small velocities cannot be measured if
the resolution is low. However, the number of pixels increases with the
spatial resolution and consequently requires a higher number of com-
putations per frame. In addition, high resolution enables the analysis of
natural scenes with usually more than one object under motion.

Flexibility To cope with the above requirements, measurements have
shown that specialized hardware is needed [16]. As special-purpose
hardware has higher costs than off-the-shelf hardware, flexibility is an
important factor that can increase the application area of the designed
sensor and thus reduce the overall costs. Several aspects contribute to
this flexibility. A miniaturized sensor system with low power consump-
tion extends the range of application, e.g., to battery-powered mobile
vehicles. A modular and scalable architecture enables the engineer to
reconfigure the sensor system if constraints from applications change.

The architecture has to integrate sensorial and processing elements.
Additionally, a communicational link to the sensor is required. Hence,
the optical flow sensor system is composed of three basic and one auxil-
iary closely connected parts. (See Figure 1.)

Figure 1. Overview system.
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The imager The imager, or the front-end part of the system, forms
the interface to the visual world. Image intensity data are acquired and
transmitted to the processing unit.

The processing unit From a sequence of image data the processing
unit extracts the motion information, which is represented by the com-
ponents of the optical flow field.

The interface Finally, the optical flow data are forwarded to an in-
terface (back-end), which provides the needed conversion between the
low-level and the high-level image processing system.

The synchronizer Besides the image data flow, there is a need for a
close synchronization of all components of the sensor system to yield
maximum performance. This requirement can be easily fulfilled by using
common synchronization signals that indicate valid pixels, new lines,
and new frames.

2.1 Imager
The interface to the visual world is made by a cameralike component,
which is named the imager. The purpose of the imager is to sense the
visual world and to transform intensity values into electrical signals. In
addition, the image data are prepared to be forwarded to the optical flow
processing unit.

There exist various alternatives to implement the imager. In gen-
eral it consists of two basic components: a photosensitive surface, and a
driving circuitry, which adapts the chosen photosensitive surface to the
connected processing unit. (See Figure 2.) A sharp distinction between
these two components is not always possible. In commercial products
the seeing surface is usually highly integrated and already includes some
driving circuitry. Nevertheless, some additional circuitry is always nec-
essary to couple the imager and processing unit. To build an optical flow
sensor system with a high flexibility, a wide range of alternative imagers
is considered. The selection is of course application driven.

For alternative implementations we considered in the first place a
CMOS photodiode array [7] or a standard CCD circuit. But also other,
highly specialized imagers should be considered, since they give a new
opening to some interesting application areas, e.g., a space-variant

Figure 2. Imager with photosensitive
surface and driving circuitry.
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CMOS imager with a logpolar pixel layout [14] enables an easy extrac-
tion of optical flow attributes in an active-vision system, e.g., time-to-
impact [22]. An infrared camera can be used for presegmentation of
scenes under observation making just parts visible. A high-speed CCD
camera enables us to analyze scenes with a high-speed motion content.

Due to the multiple possible imagers, a simple interface between the
processing unit and the imager is defined. This supports the flexibil-
ity of the system. The major signals are the PixelClock for informa-
tion request and the FrameSync for new frame identification. While the
FrameSync signal indicates the start of a new frame to the processing
unit, the PixelClock sent from the processing unit to the imager enables
the sending of the image intensity data, corresponding to xdim× ydim
pixels from the imager to the processing unit. The image data are coded
as 8-bit data and are sent in sequential order.

The structure of the driving circuitry very much depends on the cho-
sen photosensitive surface and may be composed by different compo-
nents. It generates all driving signals for the photosensitive surface and
generates synchronization signals to the processing unit and the inter-
face. In addition it may take over tasks like AD-conversion, spatial up-
and down-sampling of frames, selection of a region of interest (ROI),
noise removal, error correction, and additional preprocessing. To this
synchronization signals like VSYNC and HSYNC can be added, and hence
the driving unit implementation takes over tasks of the synchronizer.
Because of its flexibility, programmable logic is the best choice to imple-
ment the digital functions of the driving circuitry.

2.2 Processing Unit
As described in Section 2.1, the image intensity data are sent in sequen-
tial order, pixel by pixel, line by line, to the processing unit. Hence a
processing architecture that takes advantage of this sequential order is
best suited to compute the optical flow. A pixel pipeline supports such
a processing scheme. However, the optical flow computation technique
needs to be adapted to this processing scheme. The proposed new ar-
chitecture for the processing unit of optical flow computation can be
divided into three major blocks. (See Figure 3.)

Data path The data path forms the pixel pipeline. It transforms the im-
age data into optical flow information. All data are acquired, processed,
and outputted according to the pixel sequential processing scheme. The

Figure 3. Block diagram of the
processing unit.
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pipeline is driven by the PixelClock signal. The output of the optical
flow system corresponds to a 2-D (x, y) field of velocity vectors.

Controller The controller coordinates the timing of all elements be-
longing to the data path. It starts the processing upon the receipt of
the FrameSync signal and generates the PixelClock to synchronize im-
ager and interface to output. All signals are derived from an incoming
MasterClock signal.

Memory Due to technological restrictions, the memory is not inte-
grated into the ASIC. External components are used. Functionally they
form delay lines, which are part of the data path architecture.

To assure compatibility with high-level image processing architec-
tures, each vector component of the output is coded as an 8-bit value
(byte). The format is chosen so that each output value represents motion
in the range of −4 to +4 pixels/frame. The least significant bit (LSB)
corresponds to the smallest velocity value of ≈ 0.016 pixels/frame. If
we visualize the velocity data as images, the 8-bit coding gives a value
of 128, corresponding to a medium gray or zero-velocity. Positive ve-
locities appear as lighter gray, and negative velocities as darker. Figure 4
shows a sample result from a hardware simulation run. Such simulations
play a central role in hardware design and allow the designer to verify
the hardware before the circuit is actually going to be produced.

2.3 Interface
The computation of the optical flow from a sequence of images is only
the first step in our computer vision system. A higher-level process-
ing unit is required to transform the extracted motion information into
knowledge and/or control signals. Depending on the application, this
could be time-to-impact or an alarm command.

The output is via two channels (one for each component), each coded
with 8-bit resolution. In addition to the data, synchronization signals
need to be given. Hence digital image and signal processing systems with
two input channels are well suited to interface the optical flow sensor.
One possible choice is to use a digital frame grabber card in a PC to
acquire the optical flow data. (See Figure 5.) Then the PC performs the
higher-level tasks.

A good alternative to a frame grabber card is to interface the data
directly to a DSP system. Their high I/O capabilities make them well
suited to form the higher-level processing unit.

3 Processing Unit Architecture
3.1 Optical Flow Algorithm
Numerous computational methods have been developed for optical flow
estimation. An exhaustive survey can be read in the paper of Barron et
al. [3]. One of the fundamental methods for the optical flow estimation
is the technique developed by Horn and Schunck [9]. Their approach
is known as a differential technique as it computes the optical flow from
the spatiotemporal derivatives of the image intensities. As our hardware
implementation started from this approach, we present it in the next
paragraphs.

Let’s consider the intensity I of local image regions is approximately
constant under motion over a short duration of time, dI/dt = 0. Then
the gradient constraint equation is derived as
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Figure 4. Frame (a) shows a sample
from the diverging tree sequence
provided by [2]. Among others, this
sequence was used to simulate the
hardware and to verify its behavior
before the hardware was going to
be fabricated. (b) and (c) show the
x and y components of the optical
flow field coded as 8-bit values and
visualized as images. (d) shows a
vector visualization.

(a)

(b) (c)

(d)
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Figure 5. Interface to digital frame
grabber.
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Ixu+ Iyv + It = 0, (1)

where u and v denote the x and y components of the optical flow vector
and Ix, Iy, and It are the spatial and temporal derivatives of the image
intensity. These derivatives can be approximated as the difference in
intensity of neighboring pixels in space and respectively in time.

Equation (1) is under-determined for the computation of the optical
flow components. However, as neighboring object points have similar
velocities, a smoothness regularization term can be introduced. This al-
lows the computation of the optical flow by minimizing a cost function
derived from the gradient constraint equation and the smoothness reg-
ularization term.

This minimization problem can be solved through iteration using the
relaxation formula(

u

v

)∣∣∣∣
n+1
=
(
ū

v̄

)
− Ixū+ Iyv̄ + It
I2
x + I2

y + 4α2

(
Ix
Iy

)∣∣∣∣
n

, (2)

where α, known as a smoothing parameter, is a constant that weights
the influence of the regularization term. The variables ū and v̄ denote
the averaged local optical flow, approximated from neighboring pix-
els in space. Originally, n indicates the iterations to be performed for
one image frame. However, assuming continuous operation and smooth
object motions, this number of iterations can be reduced to one. This al-
lows us to interpret the parameter n in Equation 2 as frame counter. At
start-up, the optical flow estimation converges to its correct values after
an initialization phase of a few frames.

The new proposed hardware architecture reflects the implementation
of this method. Figure 6 sketches the mapping of the algorithm on the
hardware architecture. It shows the partitioning of the pipeline into func-
tional blocks: preprocessing, computation of derivatives, computation
of the optical flow components, and computation of local optical flow
averages.

3.2 Preprocessing
The preprocessing block implements a spatial Gaussian smoothing of
the input image sequence. Linear filters are good for removing noise,
especially Gaussian noise. A linear filter can be implemented by using
the weighted sum of the pixels in the near neighborhood. The weight
values are given by a convolution mask. Typically, the same type of mask
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Figure 6. Data path of the processing
unit.
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is used for the whole image. A very simple smoothing filter, which is a
rough approximation of a Gaussian smoothing, can be implemented as
follows:

1
8
×
 0 1 0

1 4 1
0 1 0

 . (3)

As the operation needs a central pixel and at least the neighbors above,
below, left, and right, the mask has a minimum size of 3 × 3. The
smoothing operation is implemented through the mask operation over
the whole image. This smoothing corresponds to the regularization pro-
cedures that yield solutions in ill-posed problems.

The implementation in hardware of the proposed preprocessing unit
has to take into consideration some specific aspects. The data path
changes the relationship among the pixels. Although the pixels in the
image are spatially neighbors, in the processing unit only the left-right
neighborhood relationship is kept. Due to the sequential data transmis-
sion, the above and below neighborship is lost. To compensate for this
lost neighborship in the proposed hardware implementation, a shift reg-
ister acting as a delay line is introduced in the preprocessing unit. A
memory access scheme, that reads image data directly from RAM, can
not always be implemented within the pixel sequential pipeline process-
ing. Not all necessary memory accesses can be performed during one
pixel clock cycle.

Therefore, convolutions, like the smoothing operation, are naturally
not well suited to be implemented into a pixel sequential processing
scheme, as they require parallel access to spatial neighboring pixels. In
this case the introduction of shift registers offers a solution.

The developed preprocessing architecture consists of two basic building
blocks: a shift register structure, and the logic unit to perform the mask
operation. (See Figure 7.) The task of the shift register structure is
to re-establish the spatial neighborhood of the pixels. The logic unit
implements the mask proposed in this section.

The implementation challenge is to find an efficient solution for the
shift register. A shift register length corresponding to two image lines
is necessary to execute the mask operation. We will refer to this shift
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Figure 7. Preprocessing block. image data
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register as a two-line shift register. The size of the two-line shift register
is dependent on the dimension of the smoothing mask.

A first approach would be to implement the two-line shift register
with standard cell technology. If we consider the 0.7µm technology from
Alcatel Mietec and the associated standard cell library, the result of the
implementation for an image length of xdim= 128 is about 5mm2. This
area is too large, as we only have four two-line shift registers available if
we take later processing stages into account. An implementation based
on just standard cell components is therefore not possible.

Another solution is proposed by Tietze and Schenk [21]. They pro-
pose SRAMs with a successive D-flip-flop to operate as shift registers
in conjunction with a cyclic counter. But this solution gives no access
to intermediate data. As most ASIC foundries offer the possibility to
generate optimized memories such as static SRAMs, we followed this
approach in the implementation of the two-line shift register and im-
proved it. We added a second SRAM and thus offered the possibility to
access intermediate data, too. The new solution brings a decrease of at
least 70% in area compared to the first one, considering the same tech-
nology. The size of a fully static, single-ported RAM of 128 words by 8-bit
is 502µm× 1572µm= 0.789mm2.

Figure 8 shows a simplified schematic of the two-line shift register.
The main components are the two SRAM cells. The D-flip-flops cells
and SRAM cells are connected by the data path, which has a width of
8 bits. By applying a cyclic address counter to the SRAM cells, the shift
register functionality is achieved. The corresponding length of the shift
register is determined by the cycle length of the counter. As both SRAM
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cells model a shift register of the same length, a single counter is suffi-
cient. To enable access to the central pixel and its left and right neigh-
bor, the chain between the shift registers has to be filled with standard
D-flip-flops. Each memory component labeled with above, left, central,
right, and below provides the image intensity data, corresponding to the
defined spatial neighborhood. The two-line shift register is synchronized
by PixelClock control signal.

As mentioned in Section 2.1 some additional preprocessing steps are
needed for each type of imager. To keep the system flexible, only the
preprocessing steps needed for the computation of the optical flow are
implemented in this unit. The image correction due to the different
imager types are part of the driving unit, e.g., an offset correction needed
for a CMOS photodiode array imager to remove fixed-pattern noise.

We can summarize that the preprocessing block integrated into the
data path executes the following operations.

Enhancement of the signal-to-noise ratio of the seeing surface out-
put by smoothing.
Improvement of the numerical differentiation of the image pixels;
numerical differentiation is an ill-posed problem. Differentiation
acts like a high-pass filter. In practice a smooth low-pass filter can
be used to yield a well-posed problem.

3.3 Derivative Computation
The derivative block implements the computation of the spatial deriva-
tives Ix and Iy and the temporal derivative It . (See Figure 9.) Input to
the derivative block is the smoothed image data from the preprocessing
block. The output of the block provides all three derivatives related to a
single pixel location in parallel to the flow computation block.

Assume the image data are already smoothed; the calculation of im-
age derivatives can then be approximated by subtracting neighboring
intensity data in space and time. These operations can be seen as convo-
lutions with simple masks:

[−1 0 1 ] (4)

in case of the x derivative Ix, and−1
0
1

 (5)

Figure 9. Derivative block.
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Figure 10. Implementation of the
frame size shift register.
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in case of the y derivative Iy. The temporal derivative It is the temporal
difference between the current image and the previous one.

The image edges are ignored. This simplifies the circuit logic but pro-
duces wrong derivative data at image edges. The trade-off of corrupted
data has been made to keep the circuitry small and fast. For the same
reason there is no overflow check. (Overflows occur if either the spatial
resolution or the frame rate is too low to handle the large velocities in
the scene under observation.) The problem can be solved by increasing
the frame rate or by selecting a larger focal length.

To some extent, the derivative block is very similar to the preprocess-
ing block. Prior to the computations, we have the same kind of two-line
shift register as introduced in the previous section. As the spatial deriva-
tives are approximated as operations on neighboring pixels, they can be
handled like mask operations. The calculation of all derivatives must be
handled in parallel to maintain the pixel pipeline. However, the tempo-
ral derivative It needs to be handled differently. Access to data of the
previous image is required.

Therefore, a second kind of shift register with a capacity correspond-
ing to one full frame is introduced. It is named frame shift register. Due
to its size, this shift register cannot be integrated as embedded memory
on the ASIC using state-of-the-art technologies. Hence, external memo-
ries are chosen. These external memories need to form a delay line of
frame length. One read/write cycle needs to be performed during one
pixel clock cycle. Read and write addresses need to be generated in a
cyclic manner to access input and output data corresponding to the cor-
rect pixel locations.

To satisfy these requirements, commercially available, dual ported
SRAMs have been chosen. Figure 10 shows how the dual-ported SRAMs
and the controller are connected. The generation of control signals and
addresses is done within the controller based on the PixelClock signal.

3.4 Optical Flow Computation
The flow computation block is central to the processing unit and imple-
ments Equation (2). It is computationally the most complex block and
outputs the x and y components of the optical flow, u and v. Input to
the block are the spatiotemporal derivatives, Ix, Iy, and It , and the local
averages of the optical flow, ū(n) and v̄(n), estimated from the optical
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Figure 11. The flow computation
block partitions the calculations
in 11 pipeline steps given by the
numbers in parenthesis. The
related computations are indicated.
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flow components of previous images. At each pixel clock cycle, all inputs
must belong to the same pixel location.

The flow computation block has two additional inputs: alpha and
debug. The debug input is a flag to output Ix and Iy instead of opti-
cal flow data. The output shows edges in the image and can be used to
adjust the focus and aperture. It shows if the seeing surface and driv-
ing unit are working correctly. The signal alpha is a 3-bit input to the
processing unit. It sets the smoothing parameter 4α2. That way the flow
computation can be adjusted to a specific application.

The calculation of the flow components cannot be done within one
pixel clock cycle. An appropriate number of pipeline steps has to be
chosen to find the right proportion between processing speed and silicon
area. Figure 11 demonstrates how Equation (2) is partitioned in eleven
pipeline steps. This is not a disadvantage, as the number of pipeline steps
is small compared to the number of pixels in a frame.

In Step 1 the numerator ny and denumerator my of the division in
Equation (2) are computed. The division itself cannot be performed effi-
ciently in one pipeline step. It is prepared in Step 2. The first significant
digit of ny and my is shifted to the most significant bit (MSB). The value
SHIFT contains information to revert the shift operation later on. The
core division is then performed in Step 3 to 11. It follows a compare
and subtract step and delivers a value with 8 significant bits. Finally, in
Step 11 we derive the optical flow x and y components. Values not used
in a pipeline step are propagated to further steps by shift registers, which
are indicated by _PIPE.

Crucial to the design of the flow computation block is the selection of
data formats of intermediate values. The goal is to yield optical flow data
with highest precision. Therefore, some intermediate data are extended
to 16 bits. The temporal derivative is multiplied by a factor of 32, which
propagates through the computations and the iterative process. This
results in an LSB of the optical flow data corresponding to a velocity
of 1/32 pixels/frame.

3.5 Feedback Path—Local Averages
The local averages block implements the feedback path. (See Figure 12.)
Input data come from the optical flow output of the flow computation
block. The output of the local averages block needs to be present to the
input of the flow computation block. The data is expected to correspond
to the correct pixel location.

The x and y components have to be handled in parallel as they are
needed at the same time. So the local averages block is composed of
two parallel paths. Each path consists of a two-line shift register, a

VIDERE 1:2 A Compact Sensor for Visual Motion Detection 47



Figure 12. Local averages block—
feedback path.
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convolution unit, and a one-frame shift register. These components are
already known from the description of the preprocessing block and the
derivatives block.

The block averages the velocity components corresponding to the four
neighboring pixel locations. This operation corresponds to a convolution
and is implemented in a similar way as presented for the preprocessing
block. The following convolution mask is used.

1
4
×
 0 1 0

1 0 1
0 1 0

 (6)

The data corresponding to the x and y components are stored in exter-
nal memories. Although separate physical devices are used as memories,
the same address and control signals are applied to both components.
These are generated by the controller block.

3.6 Controller
The controller is implemented as part of the ASIC and performs three
tasks: generating pixel clock signals, generating enable signals, and
driving external memories. Based on a MasterClock signal, two clocks
are generated to be used inside and outside the processing unit: the pixel
clock (PixelClock) and a 90◦ phase-shifted version of the pixel clock.
The phase-shifted pixel clock is needed to generate the control signals
for the memory components to perform one read/write cycle during
one pixel clock cycle. All other operations of the processing unit are
synchronously clocked with the PixelClock signal. The external system
components, like the imager and the digital interface, are synchronized
with the PixelClock.
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Based on the PixelClock and a frame-start signal (FrameSync) all
signals are generated to control the data path for optical flow compu-
tation. When the processing unit receives a FrameSync signal, it starts
processing based on the newly acquired image data.

A counter is used to enable all functional units and reflects the state
of processing. The counter starts counting at zero on receiving the
FrameSync signal and is driven by the PixelClock. When the last valid
optical flow data is generated, the counter is halted. The address coun-
ters and control signals for the external memory components are derived
from the state counter.

After reading four image lines and 13 pixels, the processing pipeline
is filled. The length results from the two-line shift registers and the
number of computational steps. First optical flow data are then given to
the output. This delay defines the latency of the optical flow processing
of the system. If the frame rate is 50 frames/s and the frame size is
128× 128 then the latency is about 0.63 msec. A complete optical flow
field is computed when a complete image is acquired and the pipeline is
filled. Here the pipeline-processing scheme shows advantages in terms
of latency compared to other architectures. This makes it well suited for
control loops which will show greater stability.

In general, a new image can be acquired before the processing of
the preceeding image is finished. To do so, a second state counter is
introduced. That way, successive images can be handled using both
counters alternatingly.

4 Implementation Results
To test the architecture a frame size of 128× 128 was chosen. The de-
sign was mapped on the Alcatel Mietec 0.7µm CMOS process (single
poly, double metal) and was successfully fabricated. Using the standard
cell library from Alcatel Mietec, all logic is implemented by automatic
synthesis. Nevertheless, shift registers are much too large to be imple-
mented in standard cells. Therefore, we chose to implement the shift
registers with SRAMs, which are provided by the foundry as compiled
cells, in conjunction with cyclic address counters. This approach made it
possible to implement all shift registers on chip.

The ASIC—the ROFlow-Chip—has an area of 6.8× 6.9mm2 including
approximately 15k gates, 1KB of memory, and 150 pad cells. Fig-
ure 13 shows a photograph of the ASIC with the location of the func-
tional blocks. First functional tests of the complete sensor system—the
ROFlow-Sensor—have shown that the fabricated ASIC performs accord-
ing to simulations and synthesis constraints. An example output of the
optical flow chip is presented in Figure 14. Image velocity is mainly de-
tected along the contour of the object under observation. It can be seen
that a person is walking from the left to the right. While the ASIC is able
to process up to 1500 frames/s, the seeing surface currently limits the
operation speed to 50 frames/s.

Whereas real-life scenes give only qualitative ideas about the func-
tionality of the sensor system, some quantitative data are derived from
experiments with translational motion parallel to a textured wall (Fig-
ure 15) or orthogonal towards an obstacle (Figure 16). These experi-
ments evaluate the optical flow data and compute characteristics of the
flow field.

In the first experiment the sensor moves parallel to a textured wall.
The photosensitive surface points towards the wall. The sensor moves
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Figure 13. Photograph of
ROFlow-Chip.
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Figure 14. Somebody walking in
front of the sensor system from the
left to the right.
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Figure 15. Data measured with
the sensor translating parallel to a
textured wall. The experiment is
done with 37.6 frames/s. The values
of the x axis are proportional to the
camera’s speed.
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with various velocities proportional to the values at the x axis of the
diagram in Figure 15. The frame rate is 37.6 frames/s. The diagram
illustrates the range of velocities that can be detected. It gives the x
component of the optical flow averaged over all pixels along with its
standard deviation; the y component is 0. The averaged image velocities
are proportional to the sensor’s speed over approximately one decade.
The measured standard deviation increases with increasing speed. How-
ever, the results depend to some degree on the kind of wall texture and
the setting of the smoothing parameter 4α2. The actual range of de-
tectable velocities can be adapted to the observed scene by the selection
of an appropriate frame rate. A higher frame rate is required to detect
smaller velocities, a lower for larger velocities.
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Figure 16. Data measured in a time-
to-impact experiment. The curves
show that elapsed run-time and the
estimated time-to-impact add to a
nearly constant value after a short
initialization phase. The frame rate
is 18.8 frames/s.
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The second experiment is dedicated to characteristics, which can be
derived from the flow field and can be used, for example, to control a
vehicle. Here the first-order derivatives are used to compute the time-
to-impact (TTI), which is defined as the time needed to hit a surface
if velocities do not change [5]. A vehicle is driving orthogonal towards
an obstacle with constant velocity. From the sensor mounted on the ve-
hicle the TTI is estimated. If this value falls below a critical value, the
vehicle is stopped. First, the optical flow data are computed at a rate of
18.8 frames/s. Second, a PC is used to evaluate the flow data following a
least-squares approach to derive the TTI values. Figure 16 shows results
from such an experiment. It gives the estimated TTI values in seconds
corresponding to the elapsed time of the experiment. If the TTI estima-
tion is correct, then the TTI and the elapsed time add to a constant value,
which corresponds to the overall duration of the experiment, from start
to impact. In the documented experiment the impact would happen at
about 4.6 seconds after start.

5 Concluding Remarks
This article presented a new sensor system for real-time optical flow
estimation. Specifically, it is shown how an existing algorithm is imple-
mented to a real-time hardware under given constraints. A description
of the architecture and results from a prototypical implementation are
given.

Following are some additional remarks concerning the performance,
applications, and future work.

Performance The ROFlow-Sensor—a prototype implementation—
computes a flow field of 128 × 128 vectors at a rate of 50 frames/s.
More-advanced systems can be built as the architecture is scalable and
can be reconfigured with various components as front-end and back-end.
Currently the frame rate is limited due to the selected imager. Using a
high-speed imaging device, the full frame rate of 1500 frames/s can be
exploited. The ROFlow-Chip is designed using a hardware description
language. By setting parameters for the number of rows and columns,
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Figure 17. Collision avoidance
system. The comport interface is
the communicational link between
sensor and DSP system.
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a circuit can be implemented to process larger frame sizes. However,
because of the pipeline processing, the maximum frame rate decreases.
But with resolutions of 512× 512 pixels, a frame rate of 90 frames/s can
still be achieved, suppose we use the same CMOS technology to design
the hardware.

Applications To illustrate the advantages of a modular system design
and to show the flexibility in use of the ROFlow-Chip, we briefly address
architectural concepts towards two different application areas. The case
studies in the following are not meant to evaluate the applications, but
to demonstrate how the ROFlow-Sensor can be configured with various
front- and back-end components to serve the specific needs.

The first application study is dedicated to autonomous mobile vehi-
cles and demonstrates the use of a specialized interface. In this area, the
use of visual motion analysis is already proved. (See [8, 17, 18].) Col-
lision avoidance is the most essential task and is prerequisite for useful
tasks, such as mail delivery in environments populated with humans.
The main goal for optical flow computation in hardware is to operate a
vehicle at higher speeds. For the collision-avoidance task, we propose a
system based on the ROFlow-Sensor for optical flow computation and a
DSP system for motion segmentation and classification. The answer of
the collision-avoidance system is information about area, time, and di-
rection of a possible impact. To communicate between ROFlow-Sensor
and DSP system, a digital interface is required. Figure 17 shows an ap-
proach of such interface for the C4x communication port [20]. On one
hand it allows control of the sensor’s frame rate and smoothing param-
eter 4α2. On the other hand it transfers the optical flow data to the DSP
system.

The second application study addresses man-machine-interfaces and
illustrates the use of the ROFlow-Chip in combination with a special-
ized camera. The interpretation of hand signs plays a central role in
this area [15]. Quantitative motion analysis can help to interpret such
signs as they are usually closely related to motions. Such systems can
be used in medicine to allow a surgeon to give commands to an as-
sisting system. Reliability and real-time reaction is required. Relevant
motion in the foreground has to be segmented from any background
motion. This is computationally expensive and can be simplified by the
use of proper illumination in the area of interest. To avoid any conflict
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Figure 18. Hand sign experiment.
Infrared-sensitive camera with video
signal output as front-end.
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with other sources of illumination, an infrared light source in combi-
nation with a specialized infrared-sensitive camera is chosen. Figure 18
shows a system approach, in which the ROFlow-Chip is connected to the
infrared-sensitive camera front-end. AD conversion, buffering, and con-
trol is introduced to form the interface in between. This way, a field of
128× 128 image data can be given to the optical flow computation.

Future The low-level vision task of optical flow computation in real
time is the first but fundamental step towards real-time motion analy-
sis applications. The next step needs to focus on subsequent higher-level
tasks, which extract a symbolic answer from the optical flow output of
the sensor system. Also in this case, application areas need to be ana-
lyzed to develop suitable architectures to cope with the real-time con-
straint. In the future, the combination of real-time, optical flow compu-
tation as low-level task and the subsequent higher-level, motion analysis
task will provide artificial computational systems with abilities known
from biological examples.
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